TY - JOUR
T1 - 1.5 years of TROPOMI CO measurements
T2 - Comparisons to MOPITT and ATom
AU - Martínez-Alonso, Sara
AU - Deeter, Merritt
AU - Worden, Helen
AU - Borsdorff, Tobias
AU - Aben, Ilse
AU - Commane, Roísin
AU - Daube, Bruce
AU - Francis, Gene
AU - George, Maya
AU - Landgraf, Jochen
AU - Mao, Debbie
AU - McKain, Kathryn
AU - Wofsy, Steven
N1 - Publisher Copyright:
© 2020 Author.
PY - 2020/9/14
Y1 - 2020/9/14
N2 - We have analyzed TROPOspheric Monitoring Instrument (TROPOMI) carbon monoxide (CO) data acquired between November 2017 and March 2019 with respect to other satellite (MOPITT, Measurement Of Pollution In The Troposphere) and airborne (ATom, Atmospheric Tomography mission) datasets to better understand TROPOMI's contribution to the global tropospheric CO record (2000 to present). MOPITT and TROPOMI are two of only a few satellite instruments to ever derive CO from solar-reflected radiances. Therefore, it is particularly important to understand how these two datasets compare. Our results indicate that TROPOMI CO retrievals over land show excellent agreement with respect to MOPITT: relative biases and their SD (i.e., accuracy and precision) are on average -3.73% ± 11.51%, -2.24% ± 12.38%, and -3.22% ± 11.13% compared to the MOPITT TIR (thermal infrared), NIR (near infrared), and TIR C NIR (multispectral) products, respectively. TROPOMI and MOPITT data also show good agreement in terms of temporal and spatial patterns. Despite depending on solar-reflected radiances for its measurements, TROPOMI can also retrieve CO over bodies of water if clouds are present by approximating partial columns under cloud tops using scaled, model-based reference CO profiles. We quantify the bias of TROPOMI total column retrievals over bodies of water with respect to colocated in situ ATom CO profiles after smoothing the latter with the TROPOMI column averaging kernels (AKs), which account for signal attenuation under clouds (relative bias and its SD D 3.25% ± 11.46 %). In addition, we quantify enull (the null-space error), which accounts for differences between the shape of the TROPOMI reference profile and that of the ATom true profile (enull D 2.16%±2.23 %). For comparisons of TROPOMI and MOPITT retrievals over open water we compare TROPOMI total CO columns to their colocated MOPITT TIR counterparts. Relative bias and its SD are 2.98% ± 15.71 % on average. We investigate the impact of discrepancies between the a priori and reference CO profiles (used by MOPITT and TROPOMI, respectively) on CO retrieval biases by applying a null-space adjustment (based on the MOPITT a priori) to the TROPOMI total column values. The effect of this adjustment on MOPITT and TROPOMI biases is minor, typically 1 2 percentage points.
AB - We have analyzed TROPOspheric Monitoring Instrument (TROPOMI) carbon monoxide (CO) data acquired between November 2017 and March 2019 with respect to other satellite (MOPITT, Measurement Of Pollution In The Troposphere) and airborne (ATom, Atmospheric Tomography mission) datasets to better understand TROPOMI's contribution to the global tropospheric CO record (2000 to present). MOPITT and TROPOMI are two of only a few satellite instruments to ever derive CO from solar-reflected radiances. Therefore, it is particularly important to understand how these two datasets compare. Our results indicate that TROPOMI CO retrievals over land show excellent agreement with respect to MOPITT: relative biases and their SD (i.e., accuracy and precision) are on average -3.73% ± 11.51%, -2.24% ± 12.38%, and -3.22% ± 11.13% compared to the MOPITT TIR (thermal infrared), NIR (near infrared), and TIR C NIR (multispectral) products, respectively. TROPOMI and MOPITT data also show good agreement in terms of temporal and spatial patterns. Despite depending on solar-reflected radiances for its measurements, TROPOMI can also retrieve CO over bodies of water if clouds are present by approximating partial columns under cloud tops using scaled, model-based reference CO profiles. We quantify the bias of TROPOMI total column retrievals over bodies of water with respect to colocated in situ ATom CO profiles after smoothing the latter with the TROPOMI column averaging kernels (AKs), which account for signal attenuation under clouds (relative bias and its SD D 3.25% ± 11.46 %). In addition, we quantify enull (the null-space error), which accounts for differences between the shape of the TROPOMI reference profile and that of the ATom true profile (enull D 2.16%±2.23 %). For comparisons of TROPOMI and MOPITT retrievals over open water we compare TROPOMI total CO columns to their colocated MOPITT TIR counterparts. Relative bias and its SD are 2.98% ± 15.71 % on average. We investigate the impact of discrepancies between the a priori and reference CO profiles (used by MOPITT and TROPOMI, respectively) on CO retrieval biases by applying a null-space adjustment (based on the MOPITT a priori) to the TROPOMI total column values. The effect of this adjustment on MOPITT and TROPOMI biases is minor, typically 1 2 percentage points.
UR - https://www.scopus.com/pages/publications/85092197337
U2 - 10.5194/amt-13-4841-2020
DO - 10.5194/amt-13-4841-2020
M3 - Article
AN - SCOPUS:85092197337
SN - 1867-1381
VL - 13
SP - 4841
EP - 4864
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
IS - 9
ER -