A Growing Freshwater Lens in the Arctic Ocean With Sustained Climate Warming Disrupts Marine Ecosystem Function

Weiwei Fu, J. Keith Moore, François W. Primeau, Keith Lindsay, James T. Randerson

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

One of the most robust changes in the hydrological cycle predicted by Earth System Models (ESMs) during the remainder of 21st century is an increase in the difference between precipitation and evapotranspiration (P-E) in arctic and boreal regions. We explore the long-term consequences of this change for marine ecosystems in the Arctic Ocean using the Community Earth System Model forced with a business as usual scenario of future greenhouse gas concentrations. We find that by the year 2300 increases in freshwater delivery considerably reduce Arctic Ocean surface salinity, creating a freshwater lens that has far-reaching impacts on marine biogeochemistry. The expanding freshwater lens limits vertical nutrient supply into the euphotic zone by enhancing vertical stratification and accelerating surface lateral mixing with surface waters in the North Atlantic, which become increasingly nutrient depleted from weakening of the Atlantic Meridional Overturning Circulation (AMOC). The resulting increase in nutrient stress reduces marine export production in the Arctic Ocean by 53% in 2300 relative to the 1990s and triggers a shift in community composition with small phytoplankton replacing diatoms. At the same time, the seasonal timing of export production undergoes a 2-month forward shift, with the peak advancing from July to May. This suggests that the threat to food webs and higher trophic levels may intensify after the year 2100 as gains in productivity from sea ice loss saturate and freshwater impacts on nutrient stress continue to strengthen. Our analysis highlights the critical importance of changing terrestrial hydrology and land-ocean coupling as drivers of long-term biogeochemical change in the Arctic Ocean and the necessity of multi-century climate change projections.

Original languageEnglish
Article numbere2020JG005693
JournalJournal of Geophysical Research: Biogeosciences
Volume125
Issue number12
DOIs
StatePublished - Dec 2020

Keywords

  • Marine export production
  • diatoms
  • net primary production (NPP)
  • river runoff
  • small phytoplankton
  • stratification

Fingerprint

Dive into the research topics of 'A Growing Freshwater Lens in the Arctic Ocean With Sustained Climate Warming Disrupts Marine Ecosystem Function'. Together they form a unique fingerprint.

Cite this