TY - JOUR
T1 - A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3 nm ions at ambient concentrations
AU - Franchin, Alessandro
AU - Downard, Andy
AU - Kangasluoma, Juha
AU - Nieminen, Tuomo
AU - Lehtipalo, Katrianne
AU - Steiner, Gerhard
AU - Manninen, Hanna E.
AU - Petäjä, Tuukka
AU - Flagan, Richard C.
AU - Kulmala, Markku
N1 - Publisher Copyright:
© Author(s) 2016.
PY - 2016/6/29
Y1 - 2016/6/29
N2 - Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in Millikan-Fuchs mobility equivalent diameter, Dp (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R Combining double low line 5.5 at Dp = 1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R ∼ 2 at largest sizes, and R ∼ 1.8 at Dp = 1.5 nm) and maintained a good total transmission efficiency (6.3 % at Dp = 1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min-1, respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 μm.
AB - Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in Millikan-Fuchs mobility equivalent diameter, Dp (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R Combining double low line 5.5 at Dp = 1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R ∼ 2 at largest sizes, and R ∼ 1.8 at Dp = 1.5 nm) and maintained a good total transmission efficiency (6.3 % at Dp = 1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min-1, respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 μm.
UR - https://www.scopus.com/pages/publications/84977080422
U2 - 10.5194/amt-9-2709-2016
DO - 10.5194/amt-9-2709-2016
M3 - Article
AN - SCOPUS:84977080422
SN - 1867-1381
VL - 9
SP - 2709
EP - 2720
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
IS - 6
ER -