TY - JOUR
T1 - A nonlinear multiscale interaction model for atmospheric blocking
T2 - The eddy-blocking matching mechanism
AU - Luo, Dehai
AU - Cha, Jing
AU - Zhong, Linhao
AU - Dai, Aiguo
N1 - Publisher Copyright:
© 2014 Royal Meteorological Society.
PY - 2014/7/1
Y1 - 2014/7/1
N2 - In this article, a nonlinear multiscale interaction (NMI) model is used to propose an eddy-blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low-frequency oscillation on time-scales of 2-3 weeks. During the EVF phase with a negative-over- positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north-south straining is a response of the eddies to a dipole- or Ω-type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, the role of which, as a potential vorticity source for the blocking flow, becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region. This also suggests that weather and climate models need to be run with a grid size below 100 km in order to simulate the matching EVF and thus atmospheric blocking.
AB - In this article, a nonlinear multiscale interaction (NMI) model is used to propose an eddy-blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low-frequency oscillation on time-scales of 2-3 weeks. During the EVF phase with a negative-over- positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north-south straining is a response of the eddies to a dipole- or Ω-type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, the role of which, as a potential vorticity source for the blocking flow, becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region. This also suggests that weather and climate models need to be run with a grid size below 100 km in order to simulate the matching EVF and thus atmospheric blocking.
KW - Blocking
KW - Eddy straining
KW - Multiscale interaction
KW - Synoptic eddies
UR - https://www.scopus.com/pages/publications/84908878608
U2 - 10.1002/qj.2337
DO - 10.1002/qj.2337
M3 - Review article
AN - SCOPUS:84908878608
SN - 0035-9009
VL - 140
SP - 1785
EP - 1808
JO - Quarterly Journal of the Royal Meteorological Society
JF - Quarterly Journal of the Royal Meteorological Society
IS - 683
ER -