TY - JOUR
T1 - A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere
AU - Edwards, David P.
AU - Arellano, Avelino F.
AU - Deeter P, Merritt N.
PY - 2009/7/27
Y1 - 2009/7/27
N2 - We demonstrate the feasibility of using observing system simulation experiment (OSSE) studies to help define quantitative trace gas measurement requirements for satellite missions and to evaluate the expected performance of proposed observing strategies. The 2007 U.S. National Research Council Decadal Survey calls for a geostationary (GEO) satellite mission for atmospheric composition and air quality applications (Geostationary Coastal and Air Pollution Events Mission (GEO-CAPE)). The requirement includes a multispectral (near-infrared and thermal infrared) measurement of carbon monoxide (CO) at high spatiotemporal resolution with information on lowermost troposphere concentration. We present an OSSE to assess the improvement in surface CO characterization that would result from the addition of a GEO-CAPE CO measurement to current low Earth orbit (LEO) thermal infrared-only measurements. We construct instrument simulators for these two measurement scenarios and study the case of July 2004 when wildfires in Alaska and Canada led to significant CO pollution over the contiguous United States. Compared to a control experiment, an ensemble-based data assimilation of simulated satellite observations in a global model leads to improvements in both the surface CO distributions and the time evolution of CO profiles at locations affected by wildfire plumes and by urban emissions. In all cases, an experiment with the GEO-CAPE CO measurement scenario (overall model skill of 0.84) performed considerably better than the experiment with the current LEO/thermal infrared measurement (skill of 0.58) and the control (skill of 0.07). This demonstrates the advantages of increased sampling from GEO and enhanced measurement sensitivity to the lowermost troposphere with a multispectral retrieval.
AB - We demonstrate the feasibility of using observing system simulation experiment (OSSE) studies to help define quantitative trace gas measurement requirements for satellite missions and to evaluate the expected performance of proposed observing strategies. The 2007 U.S. National Research Council Decadal Survey calls for a geostationary (GEO) satellite mission for atmospheric composition and air quality applications (Geostationary Coastal and Air Pollution Events Mission (GEO-CAPE)). The requirement includes a multispectral (near-infrared and thermal infrared) measurement of carbon monoxide (CO) at high spatiotemporal resolution with information on lowermost troposphere concentration. We present an OSSE to assess the improvement in surface CO characterization that would result from the addition of a GEO-CAPE CO measurement to current low Earth orbit (LEO) thermal infrared-only measurements. We construct instrument simulators for these two measurement scenarios and study the case of July 2004 when wildfires in Alaska and Canada led to significant CO pollution over the contiguous United States. Compared to a control experiment, an ensemble-based data assimilation of simulated satellite observations in a global model leads to improvements in both the surface CO distributions and the time evolution of CO profiles at locations affected by wildfire plumes and by urban emissions. In all cases, an experiment with the GEO-CAPE CO measurement scenario (overall model skill of 0.84) performed considerably better than the experiment with the current LEO/thermal infrared measurement (skill of 0.58) and the control (skill of 0.07). This demonstrates the advantages of increased sampling from GEO and enhanced measurement sensitivity to the lowermost troposphere with a multispectral retrieval.
UR - https://www.scopus.com/pages/publications/70350043466
U2 - 10.1029/2008JD011375
DO - 10.1029/2008JD011375
M3 - Article
AN - SCOPUS:70350043466
SN - 0148-0227
VL - 114
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
IS - 14
M1 - D14304
ER -