A scalable eigensolver for large scale-free graphs using 2D graph partitioning

Andy Yoo, Allison H. Baker, Roger Pearce, Van Emden Henson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Scopus citations

Abstract

Eigensolvers are important tools for analyzing and mining useful information from scale-free graphs. Such graphs are used in many applications and can be extremely large. Unfortunately, existing parallel eigensolvers do not scale well for these graphs due to the high communication overhead in the parallel matrix-vector multiplication (MatVec). We develop a MatVec algorithm based on 2D edge partitioning that significantly reduces the communication costs and embed it into a popular eigensolver library. We demonstrate that the enhanced eigensolver can attain two orders of magnitude performance improvement compared to the original on a state-of-art massively parallel machine. We illustrate the performance of the embedded MatVec by computing eigenvalues of a scale-free graph with 300 million vertices and 5 billion edges, the largest scale-free graph analyzed by any in-memory parallel eigensolver, to the best of our knowledge.

Original languageEnglish
Title of host publicationProceedings of 2011 SC - International Conference for High Performance Computing, Networking, Storage and Analysis
DOIs
StatePublished - 2011
Event2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC11 - Seattle, WA, United States
Duration: Nov 12 2011Nov 18 2011

Publication series

NameProceedings of 2011 SC - International Conference for High Performance Computing, Networking, Storage and Analysis

Conference

Conference2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC11
Country/TerritoryUnited States
CitySeattle, WA
Period11/12/1111/18/11

Fingerprint

Dive into the research topics of 'A scalable eigensolver for large scale-free graphs using 2D graph partitioning'. Together they form a unique fingerprint.

Cite this