TY - JOUR
T1 - A Weakened AMOC Could Cause Southern Ocean Temperature and Sea-Ice Change on Multidecadal Timescales
AU - Diamond, Rachel
AU - Sime, Louise C.
AU - Schroeder, David
AU - Jackson, Laura C.
AU - Holland, Paul R.
AU - de Asenjo, Eduardo Alastrué
AU - Bellomo, Katinka
AU - Danabasoglu, Gokhan
AU - Hu, Aixue
AU - Jungclaus, Johann
AU - Montoya, Marisa
AU - Meccia, Virna L.
AU - Saenko, Oleg A.
AU - Swingedouw, Didier
N1 - Publisher Copyright:
© 2025. The Author(s).
PY - 2025/7
Y1 - 2025/7
N2 - We present the first CMIP6-era multi-model intercomparison of the Southern Ocean (SO) temperature and sea-ice response to substantial Atlantic meridional overturning circulation (AMOC) weakening. Results are based on analysis of the North Atlantic Hosing Model Intercomparison Project, involving eight CMIP6 models under identical North Atlantic freshwater hosing. On multidecadal timescales, we find that southwards ocean heat transport into the SO increases, causing surface warming and sea-ice loss. Additionally, an atmospheric tropical-Antarctic teleconnection, identified here for the first time, causes regional temperature and sea-ice changes in the SO. Unlike previous studies, we find that the Amundsen Sea Low deepens for only some models. Overall, in the multi-model ensemble mean (multi-model range in brackets), over years 50–100 after AMOC weakening: SO surface air temperature warms by 0.3 (0.1–0.7)°C, sea level pressure (SLP) decreases by 30 (10–70) Pa, and sea-ice area decreases by 0.4 (−0.2–1.3) Mkm2. The teleconnection leads to regional differences between the response in the Indian sector and the Weddell Sea of 180 (80–320) Pa in SLP, 0.6 (0.5–1.4)°C in surface air temperature, and 0.1 (0.1–0.2) Mkm2 in sea-ice area. These SO heat transport, temperature, pressure, and sea-ice changes are small relative to the changes expected under future anthropogenic warming, despite the large and idealized 0.3 Sv hosing used to weaken the AMOC.
AB - We present the first CMIP6-era multi-model intercomparison of the Southern Ocean (SO) temperature and sea-ice response to substantial Atlantic meridional overturning circulation (AMOC) weakening. Results are based on analysis of the North Atlantic Hosing Model Intercomparison Project, involving eight CMIP6 models under identical North Atlantic freshwater hosing. On multidecadal timescales, we find that southwards ocean heat transport into the SO increases, causing surface warming and sea-ice loss. Additionally, an atmospheric tropical-Antarctic teleconnection, identified here for the first time, causes regional temperature and sea-ice changes in the SO. Unlike previous studies, we find that the Amundsen Sea Low deepens for only some models. Overall, in the multi-model ensemble mean (multi-model range in brackets), over years 50–100 after AMOC weakening: SO surface air temperature warms by 0.3 (0.1–0.7)°C, sea level pressure (SLP) decreases by 30 (10–70) Pa, and sea-ice area decreases by 0.4 (−0.2–1.3) Mkm2. The teleconnection leads to regional differences between the response in the Indian sector and the Weddell Sea of 180 (80–320) Pa in SLP, 0.6 (0.5–1.4)°C in surface air temperature, and 0.1 (0.1–0.2) Mkm2 in sea-ice area. These SO heat transport, temperature, pressure, and sea-ice changes are small relative to the changes expected under future anthropogenic warming, despite the large and idealized 0.3 Sv hosing used to weaken the AMOC.
KW - AMOC
KW - CMIP6
KW - climate models
KW - sea ice
KW - southern ocean
UR - https://www.scopus.com/pages/publications/105009781095
U2 - 10.1029/2024JC022027
DO - 10.1029/2024JC022027
M3 - Article
AN - SCOPUS:105009781095
SN - 2169-9275
VL - 130
JO - Journal of Geophysical Research: Oceans
JF - Journal of Geophysical Research: Oceans
IS - 7
M1 - e2024JC022027
ER -