TY - JOUR
T1 - Advancing Organized Convection Representation in the Unified Model
T2 - Implementing and Enhancing Multiscale Coherent Structure Parameterization
AU - Zhang, Zhixiao
AU - Christensen, Hannah M.
AU - Muetzelfeldt, Mark R.
AU - Woollings, Tim
AU - Plant, Robert S.
AU - Stirling, Alison J.
AU - Whitall, Michael A.
AU - Moncrieff, Mitchell W.
AU - Chen, Chih Chieh
AU - Feng, Zhe
N1 - Publisher Copyright:
© 2025 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2025/3
Y1 - 2025/3
N2 - To address the effect of stratiform latent heating on meso- to large-scale circulations, an enhanced implementation of the Multiscale Coherent Structure Parameterization (MCSP) is developed for the Met Office Unified Model. MCSP represents the top-heavy stratiform latent heating from under-resolved organized convection in general circulation models. We couple the MCSP with a mass-flux convection scheme (CoMorph-A) to improve storm lifecycle continuity. The improved MCSP trigger is specifically designed for mixed-phase deep convective cloud, combined with a background vertical wind shear, both known to be crucial for stratiform development. We also test a cloud top temperature dependent convective-stratiform heating partitioning, in contrast to the earlier fixed partitioning. Assessments from ensemble weather forecasts and decadal simulations demonstrate that MCSP directly reduces cloud deepening and precipitation areas by moderating mesoscale circulations. Indirectly, it amends tropical precipitation biases, notably correcting dry and wet biases over India and the Indian Ocean, respectively. Remarkably, the scheme outperforms a climate model ensemble by improving seasonal precipitation cycle predictions in these regions. The scheme also improves Madden-Julian Oscillation (MJO) spectra, achieving better alignment with observational and reanalysis data by intensifying the simulated MJO over the Indian Ocean during phases 4 to 5. However, the scheme increases precipitation overestimation over the Western Pacific. Shifting from fixed to temperature-dependent convective-stratiform partitioning reduces the Pacific precipitation overestimation and further improves the seasonal cycle in India. Spatially correlated biases highlight the necessity for advances beyond deterministic approaches to align MCSP with environmental conditions.
AB - To address the effect of stratiform latent heating on meso- to large-scale circulations, an enhanced implementation of the Multiscale Coherent Structure Parameterization (MCSP) is developed for the Met Office Unified Model. MCSP represents the top-heavy stratiform latent heating from under-resolved organized convection in general circulation models. We couple the MCSP with a mass-flux convection scheme (CoMorph-A) to improve storm lifecycle continuity. The improved MCSP trigger is specifically designed for mixed-phase deep convective cloud, combined with a background vertical wind shear, both known to be crucial for stratiform development. We also test a cloud top temperature dependent convective-stratiform heating partitioning, in contrast to the earlier fixed partitioning. Assessments from ensemble weather forecasts and decadal simulations demonstrate that MCSP directly reduces cloud deepening and precipitation areas by moderating mesoscale circulations. Indirectly, it amends tropical precipitation biases, notably correcting dry and wet biases over India and the Indian Ocean, respectively. Remarkably, the scheme outperforms a climate model ensemble by improving seasonal precipitation cycle predictions in these regions. The scheme also improves Madden-Julian Oscillation (MJO) spectra, achieving better alignment with observational and reanalysis data by intensifying the simulated MJO over the Indian Ocean during phases 4 to 5. However, the scheme increases precipitation overestimation over the Western Pacific. Shifting from fixed to temperature-dependent convective-stratiform partitioning reduces the Pacific precipitation overestimation and further improves the seasonal cycle in India. Spatially correlated biases highlight the necessity for advances beyond deterministic approaches to align MCSP with environmental conditions.
KW - Madden-Julian Oscillation
KW - mesoscale convective system
KW - organized convection parameterization
KW - precipitation seasonal cycle
KW - storm tracks
KW - stratiform latent heating
UR - https://www.scopus.com/pages/publications/105000721727
U2 - 10.1029/2024MS004370
DO - 10.1029/2024MS004370
M3 - Article
AN - SCOPUS:105000721727
SN - 1942-2466
VL - 17
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
IS - 3
M1 - e2024MS004370
ER -