An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation

Stephen Yeager, Fred Castruccio, Ping Chang, Gokhan Danabasoglu, Elizabeth Maroon, Justin Small, Hong Wang, Lixin Wu, Shaoqing Zhang

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Climate models are essential tools for investigating intrinsic North Atlantic variability related to variations in the Atlantic meridional overturning circulation (AMOC), but recent observations have called into question the fidelity of models that emphasize the importance of Labrador Sea processes. A multicentury preindustrial climate simulation that resolves ocean mesoscale eddies has a realistic representation of key observed subpolar Atlantic phenomena, including the dominance of density-space overturning in the eastern subpolar gyre, and thus provides uniquely credible context for interpreting short observational records. Despite weak mean surface diapycnal transformation in the Labrador Sea, multidecadal AMOC variability can be traced to anomalous production of dense Labrador Sea Water with buoyancy forcing in the western subpolar gyre playing a substantial driving role.

Original languageEnglish
Article numberabh3592
JournalScience advances
Volume7
Issue number41
DOIs
StatePublished - Oct 2021

Fingerprint

Dive into the research topics of 'An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation'. Together they form a unique fingerprint.

Cite this