TY - JOUR
T1 - Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling
AU - Ruiz-Arias, J. A.
AU - Dudhia, J.
AU - Gueymard, C. A.
AU - Pozo-Vázquez, D.
PY - 2013
Y1 - 2013
N2 - The daily Level-3 MODIS aerosol optical depth (AOD) product is a global daily spatial aggregation of the Level-2 MODIS AOD (10-km spatial resolution) into a regular grid with a resolution of 1° × 1° . It offers interesting characteristics for surface solar radiation and numerical weather modeling applications. However, most of the validation efforts so far have focused on Level-2 products and only rarely on Level 3. In this contribution, we compare the Level-3 Collection 5.1 MODIS AOD dataset from the Terra satellite available since 2000 against observed daily AOD values at 550 nm from more than 500 AERONET ground stations around the globe. Overall, the mean error of the dataset is 0.03 (17%, relative to the mean ground-observed AOD), with a root mean square error of 0.14 (73%, relative to the same), but these errors are also found highly dependent on geographical region. We propose new functions for the expected error of the Level-3 AOD, as well as for both its mean error and its standard deviation. Additionally, we investigate the role of pixel count vis-à-vis the reliability of the AOD estimates, and also explore to what extent the spatial aggregation from Level 2 to Level 3 influences the total uncertainty in the Level-3 AOD. Finally, we use a radiative transfer model to investigate how the Level-3 AOD uncertainty propagates into the calculated direct normal and global horizontal irradiances.
AB - The daily Level-3 MODIS aerosol optical depth (AOD) product is a global daily spatial aggregation of the Level-2 MODIS AOD (10-km spatial resolution) into a regular grid with a resolution of 1° × 1° . It offers interesting characteristics for surface solar radiation and numerical weather modeling applications. However, most of the validation efforts so far have focused on Level-2 products and only rarely on Level 3. In this contribution, we compare the Level-3 Collection 5.1 MODIS AOD dataset from the Terra satellite available since 2000 against observed daily AOD values at 550 nm from more than 500 AERONET ground stations around the globe. Overall, the mean error of the dataset is 0.03 (17%, relative to the mean ground-observed AOD), with a root mean square error of 0.14 (73%, relative to the same), but these errors are also found highly dependent on geographical region. We propose new functions for the expected error of the Level-3 AOD, as well as for both its mean error and its standard deviation. Additionally, we investigate the role of pixel count vis-à-vis the reliability of the AOD estimates, and also explore to what extent the spatial aggregation from Level 2 to Level 3 influences the total uncertainty in the Level-3 AOD. Finally, we use a radiative transfer model to investigate how the Level-3 AOD uncertainty propagates into the calculated direct normal and global horizontal irradiances.
UR - https://www.scopus.com/pages/publications/84872715871
U2 - 10.5194/acp-13-675-2013
DO - 10.5194/acp-13-675-2013
M3 - Article
AN - SCOPUS:84872715871
SN - 1680-7316
VL - 13
SP - 675
EP - 692
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 2
ER -