Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI 3DVar, EnKF, and Hybrid En3DVar for the Analysis and Short-Term Forecast of a Supercell Storm Case

Rong Kong, Ming Xue, Edward R. Mansell, Chengsi Liu, Alexandre O. Fierro

Research output: Contribution to journalArticlepeer-review

2 Scopus citations
Original languageEnglish
Pages (from-to)263-277
Number of pages15
JournalAdvances in Atmospheric Sciences
Volume41
Issue number2
DOIs
StatePublished - Feb 2024

Keywords

  • EnKF
  • EnVar
  • Goes-r
  • Data assimilation
  • Lightning

Fingerprint

Dive into the research topics of 'Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI 3DVar, EnKF, and Hybrid En3DVar for the Analysis and Short-Term Forecast of a Supercell Storm Case'. Together they form a unique fingerprint.

Cite this