TY - JOUR
T1 - Atmospheric Cold Pools and Their Influence on Sea Surface Temperature in the Bay of Bengal
AU - Girishkumar, M. S.
AU - Joseph, Jofia
AU - McPhaden, M. J.
AU - Pattabhi Ram Rao, E.
N1 - Publisher Copyright:
© 2021. American Geophysical Union. All Rights Reserved.
PY - 2021/9
Y1 - 2021/9
N2 - Recent observations show that atmospheric cold pool (ACP) events are plentiful in the Bay of Bengal (BoB) during summer (May–September) and fall (October–November) and that these events can significantly modify local air-sea interaction processes on sub-daily time scales. In this study, we examine whether the magnitude of sea surface temperature (SST) drop associated with ACP events shows any diurnal variability during summer and fall. For this purpose, we use moored buoy data with a 10-min temporal resolution at 8°, 12°, and 15°N along 90°E and a one-dimensional mixed layer (ML) model. The analysis shows a reduction in SST (ΔSST) due to ACPs in the BoB during summer and fall, with a maximum magnitude of ΔSST during the afternoon (1200–1600 LST). However, the maximum magnitude of ΔSST during the afternoon is a factor of two higher during fall (∼−0.14°C) than summer (∼−0.07°C). Analysis based on observations and ACP sensitivity experiments indicates that the shallow daytime thermocline and associated thin surface ML is the primary factor regulating the day to night difference in ΔSST associated with ACPs. The presence of this shallow daytime thermocline and thin ML amplifies the effects on SST of net surface heat loss and entrainment of cold sub-surface water associated with enhanced ACP wind speeds.
AB - Recent observations show that atmospheric cold pool (ACP) events are plentiful in the Bay of Bengal (BoB) during summer (May–September) and fall (October–November) and that these events can significantly modify local air-sea interaction processes on sub-daily time scales. In this study, we examine whether the magnitude of sea surface temperature (SST) drop associated with ACP events shows any diurnal variability during summer and fall. For this purpose, we use moored buoy data with a 10-min temporal resolution at 8°, 12°, and 15°N along 90°E and a one-dimensional mixed layer (ML) model. The analysis shows a reduction in SST (ΔSST) due to ACPs in the BoB during summer and fall, with a maximum magnitude of ΔSST during the afternoon (1200–1600 LST). However, the maximum magnitude of ΔSST during the afternoon is a factor of two higher during fall (∼−0.14°C) than summer (∼−0.07°C). Analysis based on observations and ACP sensitivity experiments indicates that the shallow daytime thermocline and associated thin surface ML is the primary factor regulating the day to night difference in ΔSST associated with ACPs. The presence of this shallow daytime thermocline and thin ML amplifies the effects on SST of net surface heat loss and entrainment of cold sub-surface water associated with enhanced ACP wind speeds.
UR - https://www.scopus.com/pages/publications/85115737008
U2 - 10.1029/2021JC017297
DO - 10.1029/2021JC017297
M3 - Article
AN - SCOPUS:85115737008
SN - 2169-9275
VL - 126
JO - Journal of Geophysical Research: Oceans
JF - Journal of Geophysical Research: Oceans
IS - 9
M1 - e2021JC017297
ER -