TY - JOUR
T1 - Constraining cloud lifetime effects of aerosols using A-Train satellite observations
AU - Wang, Minghuai
AU - Ghan, Steven
AU - Liu, Xiaohong
AU - L'Ecuyer, Tristan S.
AU - Zhang, Kai
AU - Morrison, Hugh
AU - Ovchinnikov, Mikhail
AU - Easter, Richard
AU - Marchand, Roger
AU - Chand, Duli
AU - Qian, Yun
AU - Penner, Joyce E.
PY - 2012/8/16
Y1 - 2012/8/16
N2 - Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S pop), is a good measure of the liquid water path response to aerosol perturbation (&), as both Spop and & strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. Spop in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of Spop and to examine Spop in high-resolution models.
AB - Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S pop), is a good measure of the liquid water path response to aerosol perturbation (&), as both Spop and & strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. Spop in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of Spop and to examine Spop in high-resolution models.
UR - https://www.scopus.com/pages/publications/84865473923
U2 - 10.1029/2012GL052204
DO - 10.1029/2012GL052204
M3 - Article
AN - SCOPUS:84865473923
SN - 0094-8276
VL - 39
JO - Geophysical Research Letters
JF - Geophysical Research Letters
IS - 15
M1 - L15709
ER -