Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS - A case study in a suburban forest of the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ) 2016

Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas McGee, Rokjin Park, Saewung Kim

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

We report OH reactivity observations by a chemical ionization mass spectrometer–comparative reactivity method (CIMS-CRM) instrument in a suburban forest of the Seoul metropolitan area (SMA) during the Korea–United States Air Quality Study (KORUS-AQ 2016) from mid-May to mid-June of 2016. A comprehensive observational suite was deployed to quantify reactive trace gases inside of the forest canopy including a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). An average OH reactivity of 30:75:1 s1 was observed, while the OH reactivity calculated from CO, NOCNO2 (NOx ), ozone (O3), sulfur dioxide (SO2), and 14 volatile organic compounds (VOCs) was 11:81:0 s1. An analysis of 346 peaks from the PTR-ToF-MS accounted for an additional 6:02:2 s1 of the total measured OH reactivity, leaving 42.0% missing OH reactivity. A series of analyses indicate that the missing OH reactivity most likely comes from VOC oxidation products of both biogenic and anthropogenic origin.

Original languageEnglish
Pages (from-to)6331-6345
Number of pages15
JournalAtmospheric Chemistry and Physics
Volume21
Issue number8
DOIs
StatePublished - Apr 27 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS - A case study in a suburban forest of the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ) 2016'. Together they form a unique fingerprint.

Cite this