Abstract
We report OH reactivity observations by a chemical ionization mass spectrometer–comparative reactivity method (CIMS-CRM) instrument in a suburban forest of the Seoul metropolitan area (SMA) during the Korea–United States Air Quality Study (KORUS-AQ 2016) from mid-May to mid-June of 2016. A comprehensive observational suite was deployed to quantify reactive trace gases inside of the forest canopy including a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). An average OH reactivity of 30:75:1 s1 was observed, while the OH reactivity calculated from CO, NOCNO2 (NOx ), ozone (O3), sulfur dioxide (SO2), and 14 volatile organic compounds (VOCs) was 11:81:0 s1. An analysis of 346 peaks from the PTR-ToF-MS accounted for an additional 6:02:2 s1 of the total measured OH reactivity, leaving 42.0% missing OH reactivity. A series of analyses indicate that the missing OH reactivity most likely comes from VOC oxidation products of both biogenic and anthropogenic origin.
| Original language | English |
|---|---|
| Pages (from-to) | 6331-6345 |
| Number of pages | 15 |
| Journal | Atmospheric Chemistry and Physics |
| Volume | 21 |
| Issue number | 8 |
| DOIs | |
| State | Published - Apr 27 2021 |
| Externally published | Yes |