Crystallization by settling in suspensions of hard spheres

Bruce J. Ackerson, S. E. Paulin, Benjamin Johnson, William van Megen, Sylvia Underwood

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

We examine crystallization by settling for two different model hard-sphere suspensions. Sedimentation velocities, internal shock velocities, and crystal growth velocities are measured. Dynamic light scattering experiments measure volume fraction profiles in fluid phases, while Bragg scattering experiments determine volume fraction profiles in crystal phases. Centrifugation experiments determine the particle Péclet number above which samples will not crystallize. The sedimentation velocities, as a function of volume fraction, agree with other “hard-sphere” data. Remarkably, the value of the reduced crystal growth velocity (∼0.075) obtains for two orders of magnitude of the particle Péclet number. Kynch theory provides an adequate description of the data in the fluid phase, but is less adequate for volume fraction profiles in the crystal phase. The crystals in the dense sediment are compressed more along a vertical axis relative to the horizontal axis. Predicted Wilson-Frenkel crystal growth velocities, calculated using known hard-sphere equations of state and a short-time self-diffusion constant, rationalize the measured crystal growth velocities.

Original languageEnglish
Pages (from-to)6903-6913
Number of pages11
JournalPhysical Review E
Volume59
Issue number6
DOIs
StatePublished - 1999

Fingerprint

Dive into the research topics of 'Crystallization by settling in suspensions of hard spheres'. Together they form a unique fingerprint.

Cite this