TY - GEN
T1 - Developing a global turbulence and convection nowcast and Forecast system
AU - Williams, John K.
AU - Sharman, Robert
AU - Kessinger, Cathy
AU - Feltz, Wayne
AU - Wimmers, Anthony
AU - Bedka, Kristopher
PY - 2009
Y1 - 2009
N2 - Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers. Turbulence encounters frequently occur in oceanic and remote regions where ground-based observations are sparse, making hazard characterization more difficult, and where current World Area Forecast System products provide only low temporal and spatial resolution depictions of potential hazards. This paper describes a new effort to develop a global diagnosis and forecast system that will augment and enhance international turbulence and convective SIGMETs and provide authoritative global turbulence data for the NextGen 4-D database. This fully automated system, modeled on the FAA's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, will provide 3-D probabilistic turbulence nowcasts and forecasts globally above 10,000 feet MSL for 0-36 hour lead times, comprehensively addressing clear-air turbulence (CAT), mountain wave turbulence (MWT), and convectively-induced turbulence (CIT). The system will employ NCEP Global Forecast System model output and data from NASA and other national and international satellite assets to produce the CAT and MWT diagnoses based on both model-based turbulence diagnostics and satellite-based turbulence detection algorithms. The convective nowcast methodology makes use of GFS data and operational satellite data from GOES, Meteosat and MTSAT, and will be tuned and verified using data from NASA's TRMM, Cloudsat and MODIS instruments. The convective nowcasts will be coupled with the GFS environmental information to assess the near-term likelihood of CIT. This paper presents an overview of the system elements and initial algorithm development results. Future work will perform additional development and verification using comparisons with automated quantitative in situ turbulence reports, AIREPs and AMDAR data. A real-time demonstration including a web-based display and cockpit uplinks is also planned.
AB - Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers. Turbulence encounters frequently occur in oceanic and remote regions where ground-based observations are sparse, making hazard characterization more difficult, and where current World Area Forecast System products provide only low temporal and spatial resolution depictions of potential hazards. This paper describes a new effort to develop a global diagnosis and forecast system that will augment and enhance international turbulence and convective SIGMETs and provide authoritative global turbulence data for the NextGen 4-D database. This fully automated system, modeled on the FAA's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, will provide 3-D probabilistic turbulence nowcasts and forecasts globally above 10,000 feet MSL for 0-36 hour lead times, comprehensively addressing clear-air turbulence (CAT), mountain wave turbulence (MWT), and convectively-induced turbulence (CIT). The system will employ NCEP Global Forecast System model output and data from NASA and other national and international satellite assets to produce the CAT and MWT diagnoses based on both model-based turbulence diagnostics and satellite-based turbulence detection algorithms. The convective nowcast methodology makes use of GFS data and operational satellite data from GOES, Meteosat and MTSAT, and will be tuned and verified using data from NASA's TRMM, Cloudsat and MODIS instruments. The convective nowcasts will be coupled with the GFS environmental information to assess the near-term likelihood of CIT. This paper presents an overview of the system elements and initial algorithm development results. Future work will perform additional development and verification using comparisons with automated quantitative in situ turbulence reports, AIREPs and AMDAR data. A real-time demonstration including a web-based display and cockpit uplinks is also planned.
UR - https://www.scopus.com/pages/publications/77958192846
M3 - Conference contribution
AN - SCOPUS:77958192846
SN - 9781563479755
T3 - 1st AIAA Atmospheric and Space Environments Conference
BT - 1st AIAA Atmospheric and Space Environments Conference
T2 - 1st AIAA Atmospheric and Space Environments Conference
Y2 - 22 June 2009 through 25 June 2009
ER -