TY - JOUR
T1 - Diurnal Soil Freeze-Thaw Cycles and the Factors Determining Their Changes in Warming Climate in the Upper Brahmaputra Basin of the Tibetan Plateau
AU - Li, Ning
AU - Cuo, Lan
AU - Zhang, Yongxin
AU - Flerchinger, Gerald N.
N1 - Publisher Copyright:
© 2024. American Geophysical Union. All Rights Reserved.
PY - 2024/10/28
Y1 - 2024/10/28
N2 - Soil freeze-thaw cycles play a critical role in ecosystem, hydrological and biogeochemical processes, and climate. The Tibetan Plateau (TP) has the largest area of frozen soil that undergoes freeze-thaw cycles in the low-mid latitudes. Evidence suggests ongoing changes in seasonal freeze-thaw cycles during the past several decades on the TP. However, the status of diurnal freeze-thaw cycles (DFTC) of shallow soil and their response to climate change largely remain unknown. In this study, using in-situ observations, the latest reanalysis, machine learning, and physics-based modeling, we conducted a comprehensive assessment of the spatiotemporal variations of DFTC and their response to climate change in the upper Brahmaputra (UB) basin. About 24 ± 8% of the basin is subjected to DFTC with a mean frequency of 87 ± 55 days during 1980–2018. The area and frequency of DFTC show small long-term changes during 1980–2018. Air temperature impacts on the frequency of DFTC changes center mainly around the freezing point (0°C). The spatial variations in the response of DFTC to air temperature can primarily be explained by three factors: precipitation (30.4%), snow depth (22.6%) and seasonal warming/cooling rates (14.9%). Both rainfall and snow events reduce diurnal fluctuations of soil temperature, subsequently reducing DFTC frequency, primarily by decreasing daytime temperature through evaporation-cooling and albedo-cooling effects, respectively. These results provide an in-depth understanding of diurnal soil freeze-thaw status and its response to climate change.
AB - Soil freeze-thaw cycles play a critical role in ecosystem, hydrological and biogeochemical processes, and climate. The Tibetan Plateau (TP) has the largest area of frozen soil that undergoes freeze-thaw cycles in the low-mid latitudes. Evidence suggests ongoing changes in seasonal freeze-thaw cycles during the past several decades on the TP. However, the status of diurnal freeze-thaw cycles (DFTC) of shallow soil and their response to climate change largely remain unknown. In this study, using in-situ observations, the latest reanalysis, machine learning, and physics-based modeling, we conducted a comprehensive assessment of the spatiotemporal variations of DFTC and their response to climate change in the upper Brahmaputra (UB) basin. About 24 ± 8% of the basin is subjected to DFTC with a mean frequency of 87 ± 55 days during 1980–2018. The area and frequency of DFTC show small long-term changes during 1980–2018. Air temperature impacts on the frequency of DFTC changes center mainly around the freezing point (0°C). The spatial variations in the response of DFTC to air temperature can primarily be explained by three factors: precipitation (30.4%), snow depth (22.6%) and seasonal warming/cooling rates (14.9%). Both rainfall and snow events reduce diurnal fluctuations of soil temperature, subsequently reducing DFTC frequency, primarily by decreasing daytime temperature through evaporation-cooling and albedo-cooling effects, respectively. These results provide an in-depth understanding of diurnal soil freeze-thaw status and its response to climate change.
KW - diurnal freeze-thaw cycle
KW - environmental factors
KW - machine learning
KW - physics-based modeling
KW - the Tibetan plateau
KW - the upper brahmaputra basin
UR - https://www.scopus.com/pages/publications/85207192623
U2 - 10.1029/2023JD040369
DO - 10.1029/2023JD040369
M3 - Article
AN - SCOPUS:85207192623
SN - 2169-897X
VL - 129
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 20
M1 - e2023JD040369
ER -