Abstract
Balloon-borne measurements of cryogenic frost-point hygrometer (CFH) water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory on Réunion Island in the southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence ontropical tropopause layer (TTL) composition. The balloon launches were specifically planned using aLagrangian model and Meteosat-7 infrared images to sample the convective outflow from tropical storm (TS) Corentin on 25 January 2016 and tropical cyclone (TC) Enawo on 3 March 2017. Comparing the CFH profile to Aura's Microwave Limb Sounder's (MLS) monthly climatologies, watervapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15km in altitude (247 to 121hPa), originated from convectively active regions of TS Corentin and TC Enawo 1d before the planned balloon launches according to the Lagrangian trajectories. Near the tropopause region, air masses on 25 January 2016 were anomalously dry around 100hPa and were traced back to TS Corentin's active convective region where cirrus clouds and deep convective clouds may have dried the layer. An anomalously wet layer around 68hPa was traced back to the southeast Indian Ocean where a monthly water vapor anomaly of 0.5ppmv was observed. In contrast, no water vapor anomaly was found near or above the tropopause region on 3 March 2017 over Maïdo as the tropopause region was not downwind of TC Enawo. This study compares and contrasts the impact of two tropical cyclones on the humidification of the TTL over the SWIO. It also demonstrates the need for accurate balloon-borne measurements of water vapor, ozone and aerosols in regions where TTL in situ observations are sparse.
| Original language | English |
|---|---|
| Pages (from-to) | 10565-10586 |
| Number of pages | 22 |
| Journal | Atmospheric Chemistry and Physics |
| Volume | 20 |
| Issue number | 17 |
| DOIs | |
| State | Published - Sep 10 2020 |