Abstract
Two cases of observed widespread moderate-or-greater (MOG) clear-air turbulence (CAT) in different synoptic patterns are investigated using a nested high-resolution NWP model. Both of these cases occurred in confluent entrance regions of upper-tropospheric-lower-stratospheric (UTLS) jet streaks, where large-scale anticyclonic outflow from distant organized moist convection strengthened the UTLS jet. Both the strength and vertical sharpness of the resulting jet influence the altitudes of MOG turbulence and the details of simulated turbulence onset mechanisms. In a strong and narrow UTLS jet downstream of a weak synoptic ridge, MOG turbulence arises from Kelvin-Helmholtz (KH) waves that overturn in opposite directions on the vertical flanks of the jet. In broader UTLS jets, MOG turbulence arising from KH waves was favored in strong vertical shear layers beneath the wind maximum, but was inhibited above it due to static stability increases near the tropopause. However, vertically propagating internal gravity waves initiated above KH wave breaking beneath the UTLS jet amplify within the lower stratosphere above the jet, constituting another possible source of turbulence. Turbulence onset mechanisms were often apparent in simulations with minimum horizontal grid spacings of Δx = 1 km. However, amplitudes of the associated grid-resolved vertical motions were unreliable when compared with simulations having minimum horizontal grid spacings of Δx 5 1/3 km. In spite of this, turbulence forecasting systems driven by input from coarser-resolution operational NWP models are demonstrated to provide good diagnoses of this type of convectively influenced CAT when the NWP model accurately forecasts upstream convection.
| Original language | English |
|---|---|
| Pages (from-to) | 2593-2615 |
| Number of pages | 23 |
| Journal | Monthly Weather Review |
| Volume | 150 |
| Issue number | 10 |
| DOIs | |
| State | Published - Oct 2022 |
Keywords
- Convection
- Gravity waves
- Jets
- Kelvin-Helmholtz instabilities
- Turbulence