Elevated aerosol layers modify the O2-O2 absorption measured by ground-based MAX-DOAS

Ivan Ortega, Larry K. Berg, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Rainer Volkamer

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA's multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD~0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD<0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53<CFO4<0.75, similar to previously reported CFO4. Our results suggest that elevated aerosol layers, unless accounted for, can cause negative bias in the simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these elevated layers are also discussed.

Original languageEnglish
Pages (from-to)34-49
Number of pages16
JournalJournal of Quantitative Spectroscopy and Radiative Transfer
Volume176
DOIs
StatePublished - Jun 1 2016

Keywords

  • Aerosol extinction profiles
  • DOAS
  • Elevated aerosol layers
  • O correction factor (CF)
  • Oxygen collisional complex (O)

Fingerprint

Dive into the research topics of 'Elevated aerosol layers modify the O2-O2 absorption measured by ground-based MAX-DOAS'. Together they form a unique fingerprint.

Cite this