TY - JOUR
T1 - Enhanced Dissipation of Internal Tides in a Mesoscale Baroclinic Eddy
AU - Wang, Yang
AU - Legg, Sonya
N1 - Publisher Copyright:
© 2023 American Meteorological Society.
PY - 2023/10
Y1 - 2023/10
N2 - The dissipation of low-mode internal tides as they propagate through mesoscale baroclinic eddies is exam-ined using a series of numerical simulations, complemented by three-dimensional ray tracing calculations. The incident mode-1 internal tide is refracted into convergent energy beams, resulting in a zone of reduced energy flux in the lee of the eddy. The dissipation of internal tides is significantly enhanced in the upper water column within strongly baroclinic (anti-cyclonic) eddies, exhibiting a spatially asymmetric pattern, due to trapped high-mode internal tides. Where the eddy velocity opposes the internal tide propagation velocity, high-mode waves can be trapped within the eddy, whereas high modes can freely propagate away from regions where eddy and internal wave velocities are in the same direction. The trapped high modes with large vertical shear are then dissipated, with the asymmetric distribution of trapping leading to the asymmetric distribution of dissipation. Three-dimensional ray tracing solutions further illustrate the importance of the baroclinic current for wave trapping. Similar enhancement of dissipation is also found for a baroclinic cyclonic eddy. However, a bar-otropic eddy is incapable of facilitating robust high modes and thus cannot generate significant dissipation of internal tides, despite its strong velocities. Both energy transfer from low to high modes in the baroclinic eddy structure and trapping of those high modes by the eddy velocity field are therefore necessary to produce internal wave dissipation, a conclusion con-firmed by examining the sensitivity of the internal tide dissipation to eddy radius, vorticity, and vertical scale.
AB - The dissipation of low-mode internal tides as they propagate through mesoscale baroclinic eddies is exam-ined using a series of numerical simulations, complemented by three-dimensional ray tracing calculations. The incident mode-1 internal tide is refracted into convergent energy beams, resulting in a zone of reduced energy flux in the lee of the eddy. The dissipation of internal tides is significantly enhanced in the upper water column within strongly baroclinic (anti-cyclonic) eddies, exhibiting a spatially asymmetric pattern, due to trapped high-mode internal tides. Where the eddy velocity opposes the internal tide propagation velocity, high-mode waves can be trapped within the eddy, whereas high modes can freely propagate away from regions where eddy and internal wave velocities are in the same direction. The trapped high modes with large vertical shear are then dissipated, with the asymmetric distribution of trapping leading to the asymmetric distribution of dissipation. Three-dimensional ray tracing solutions further illustrate the importance of the baroclinic current for wave trapping. Similar enhancement of dissipation is also found for a baroclinic cyclonic eddy. However, a bar-otropic eddy is incapable of facilitating robust high modes and thus cannot generate significant dissipation of internal tides, despite its strong velocities. Both energy transfer from low to high modes in the baroclinic eddy structure and trapping of those high modes by the eddy velocity field are therefore necessary to produce internal wave dissipation, a conclusion con-firmed by examining the sensitivity of the internal tide dissipation to eddy radius, vorticity, and vertical scale.
KW - Internal waves
KW - Mixing
KW - Ocean
UR - https://www.scopus.com/pages/publications/85175006749
U2 - 10.1175/JPO-D-23-0045.1
DO - 10.1175/JPO-D-23-0045.1
M3 - Article
AN - SCOPUS:85175006749
SN - 0022-3670
VL - 53
SP - 2293
EP - 2316
JO - Journal of Physical Oceanography
JF - Journal of Physical Oceanography
IS - 10
ER -