TY - JOUR
T1 - Enhanced Snow Absorption and Albedo Reduction by Dust-Snow Internal Mixing
T2 - Modeling and Parameterization
AU - He, Cenlin
AU - Liou, Kuo Nan
AU - Takano, Yoshi
AU - Chen, Fei
AU - Barlage, Michael
N1 - Publisher Copyright:
©2019. The Authors.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - We extend a stochastic aerosol-snow albedo model to explicitly simulate dust internally/externally mixed with snow grains of different shapes and for the first time quantify the combined effects of dust-snow internal mixing and snow nonsphericity on snow optical properties and albedo. Dust-snow internal/external mixing significantly enhances snow single-scattering coalbedo and absorption at wavelengths of <1.0 μm, with stronger enhancements for internal mixing (relative to external mixing) and higher dust concentrations but very weak dependence on snow size and shape variabilities. Compared with pure snow, dust-snow internal mixing reduces snow albedo substantially at wavelengths of <1.0 μm, with stronger reductions for higher dust concentrations, larger snow sizes, and spherical (relative to nonspherical) snow shapes. Compared to internal mixing, dust-snow external mixing generally shows similar spectral patterns of albedo reductions and effects of snow size and shape. However, relative to external mixing, dust-snow internal mixing enhances the magnitude of albedo reductions by 10%–30% (10%–230%) at the visible (near-infrared) band. This relative enhancement is stronger as snow grains become larger or nonspherical, with comparable influences from snow size and shape. Moreover, for dust-snow external and internal mixing, nonspherical snow grains have up to ~45% weaker albedo reductions than spherical grains, depending on snow size, dust concentration, and wavelength. The interactive effect of dust-snow mixing state and snow shape highlights the importance of accounting for these two factors concurrently in snow modeling. For application to land/climate models, we develop parameterizations for dust effects on snow optical properties and albedo with high accuracy.
AB - We extend a stochastic aerosol-snow albedo model to explicitly simulate dust internally/externally mixed with snow grains of different shapes and for the first time quantify the combined effects of dust-snow internal mixing and snow nonsphericity on snow optical properties and albedo. Dust-snow internal/external mixing significantly enhances snow single-scattering coalbedo and absorption at wavelengths of <1.0 μm, with stronger enhancements for internal mixing (relative to external mixing) and higher dust concentrations but very weak dependence on snow size and shape variabilities. Compared with pure snow, dust-snow internal mixing reduces snow albedo substantially at wavelengths of <1.0 μm, with stronger reductions for higher dust concentrations, larger snow sizes, and spherical (relative to nonspherical) snow shapes. Compared to internal mixing, dust-snow external mixing generally shows similar spectral patterns of albedo reductions and effects of snow size and shape. However, relative to external mixing, dust-snow internal mixing enhances the magnitude of albedo reductions by 10%–30% (10%–230%) at the visible (near-infrared) band. This relative enhancement is stronger as snow grains become larger or nonspherical, with comparable influences from snow size and shape. Moreover, for dust-snow external and internal mixing, nonspherical snow grains have up to ~45% weaker albedo reductions than spherical grains, depending on snow size, dust concentration, and wavelength. The interactive effect of dust-snow mixing state and snow shape highlights the importance of accounting for these two factors concurrently in snow modeling. For application to land/climate models, we develop parameterizations for dust effects on snow optical properties and albedo with high accuracy.
KW - albedo parameterization
KW - dust
KW - internal mixing
KW - snow albedo
KW - snow modeling
KW - snow optical property
UR - https://www.scopus.com/pages/publications/85075432696
U2 - 10.1029/2019MS001737
DO - 10.1029/2019MS001737
M3 - Article
AN - SCOPUS:85075432696
SN - 1942-2466
VL - 11
SP - 3755
EP - 3776
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
IS - 11
ER -