TY - JOUR
T1 - Evaluating applicability of multi-source precipitation datasets for runoff simulation of small watersheds
T2 - a case study in the United States
AU - Feng, Kepeng
AU - Hong, Yang
AU - Tian, Juncang
AU - Luo, Xiangyu
AU - Tang, Guoqiang
AU - Kan, Guangyuan
N1 - Publisher Copyright:
© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2021
Y1 - 2021
N2 - Small watersheds are ideal objects for studying the evolution of hydrological and water resources at small scales. Whether precipitation products can meet the runoff simulation of small watersheds is the main purpose of this study. With NOAA-CPC-US precipitation as a reference, in nine small watersheds of the United States, accuracy of the precipitation products such as PERSIANN, PERSIANN-CDR, TRMM-3B42V7, GPM-IMERG, StageIV, and ERA5 is analyzed. By driving the CREST hydrological model using these datasets, the runoff simulation effects were evaluated. Result shows the precipitation products match the NOAA-CPC-US from high to low in the order of StageIV, PERSIANN-CDR, GPM-IMERG, PERSIANN, ERA5, and finally TRMM-3B42 V7. These datasets have relatively low accuracy in the northern high latitude area and the western mountains, while accuracy is better in the central, southern, and eastern parts of the United States. In the runoff simulation effectiveness evaluation, the daily runoff of watersheds is simulated during the same verification period. The results show that: NOAA-CPC-US and StageIV have good simulation effect in small watersheds. In the northern and western United States, the PERSIANN, PERSIANN-CDR, GPM-IMERG, and ERA5 for runoff simulation should be used with caution. TRMM-3B42V7 is not suitable for runoff simulation in small watershed.
AB - Small watersheds are ideal objects for studying the evolution of hydrological and water resources at small scales. Whether precipitation products can meet the runoff simulation of small watersheds is the main purpose of this study. With NOAA-CPC-US precipitation as a reference, in nine small watersheds of the United States, accuracy of the precipitation products such as PERSIANN, PERSIANN-CDR, TRMM-3B42V7, GPM-IMERG, StageIV, and ERA5 is analyzed. By driving the CREST hydrological model using these datasets, the runoff simulation effects were evaluated. Result shows the precipitation products match the NOAA-CPC-US from high to low in the order of StageIV, PERSIANN-CDR, GPM-IMERG, PERSIANN, ERA5, and finally TRMM-3B42 V7. These datasets have relatively low accuracy in the northern high latitude area and the western mountains, while accuracy is better in the central, southern, and eastern parts of the United States. In the runoff simulation effectiveness evaluation, the daily runoff of watersheds is simulated during the same verification period. The results show that: NOAA-CPC-US and StageIV have good simulation effect in small watersheds. In the northern and western United States, the PERSIANN, PERSIANN-CDR, GPM-IMERG, and ERA5 for runoff simulation should be used with caution. TRMM-3B42V7 is not suitable for runoff simulation in small watershed.
KW - Runoff simulation
KW - hydrological model
KW - satellite precipitation dataset
KW - small watershed
UR - https://www.scopus.com/pages/publications/85091099517
U2 - 10.1080/22797254.2020.1819169
DO - 10.1080/22797254.2020.1819169
M3 - Article
AN - SCOPUS:85091099517
SN - 1129-8596
VL - 54
SP - 372
EP - 382
JO - European Journal of Remote Sensing
JF - European Journal of Remote Sensing
IS - sup2
ER -