TY - JOUR
T1 - Evaluation of the Mountain Hydroclimate across the Western United States in Dynamically Downscaled Climate Models
AU - Adhikari, Pramod
AU - Geerts, Bart
AU - Rahimi-Esfarjani, Stefan
AU - Smith, Kaitlin
AU - Shuman, Bryan N.
AU - Schneider, Timothy L.
N1 - Publisher Copyright:
© American Meteorological Society.
PY - 2024/12
Y1 - 2024/12
N2 - This study evaluates the ability of 15 CMIP6 global climate models (GCMs), dynamically downscaled to a 9-km grid, to effectively simulate the observed regional hydroclimate across the complex terrain of the western United States. The evaluation focuses on orographic precipitation, surface temperature, and snow water equivalent (SWE), evaluated over a 33-yr period (1981-2014) using gridded gauge- and station-based datasets and a snowpack reanalysis product. Additional comparisons are made against two ERA5-driven climate reconstructions: one at 9-km resolution, with the same physical choices, and one at 4-km resolution. The latter better captures the terrain and orographic processes and uses different physics. Model performance is evaluated in four geographic regions, and mountains are contrasted against the surrounding plains. The evaluation is challenged by the fact that gridded observational estimates of climate parameters in complex terrain have a poorly quantified uncertainty related to measurement and/or representativeness issues. The ensemble mean of the downscaled GCMs overestimates cold-season precipitation, its orographic enhancement, and peak SWE in the mountains. Its diurnal temperature cycle and its mountain-plain temperature contrast are suppressed, compared to observations: its temperature estimates err toward the mean on both sides of both distributions. But the same applies to the identically downscaled (9 km) ERA5, indicating that these biases are due to model physics, not a misrepresentation of the climate system. The 4-km ERA5-based reconstruction has smaller biases in terms of precipitation and temperature, especially over mountains, but underestimates SWE. Model performance differs between mountains and plains, and the differences vary by region.
AB - This study evaluates the ability of 15 CMIP6 global climate models (GCMs), dynamically downscaled to a 9-km grid, to effectively simulate the observed regional hydroclimate across the complex terrain of the western United States. The evaluation focuses on orographic precipitation, surface temperature, and snow water equivalent (SWE), evaluated over a 33-yr period (1981-2014) using gridded gauge- and station-based datasets and a snowpack reanalysis product. Additional comparisons are made against two ERA5-driven climate reconstructions: one at 9-km resolution, with the same physical choices, and one at 4-km resolution. The latter better captures the terrain and orographic processes and uses different physics. Model performance is evaluated in four geographic regions, and mountains are contrasted against the surrounding plains. The evaluation is challenged by the fact that gridded observational estimates of climate parameters in complex terrain have a poorly quantified uncertainty related to measurement and/or representativeness issues. The ensemble mean of the downscaled GCMs overestimates cold-season precipitation, its orographic enhancement, and peak SWE in the mountains. Its diurnal temperature cycle and its mountain-plain temperature contrast are suppressed, compared to observations: its temperature estimates err toward the mean on both sides of both distributions. But the same applies to the identically downscaled (9 km) ERA5, indicating that these biases are due to model physics, not a misrepresentation of the climate system. The 4-km ERA5-based reconstruction has smaller biases in terms of precipitation and temperature, especially over mountains, but underestimates SWE. Model performance differs between mountains and plains, and the differences vary by region.
UR - https://www.scopus.com/pages/publications/85216269077
U2 - 10.1175/JHM-D-24-0063.1
DO - 10.1175/JHM-D-24-0063.1
M3 - Article
AN - SCOPUS:85216269077
SN - 1525-755X
VL - 25
SP - 1877
EP - 1894
JO - Journal of Hydrometeorology
JF - Journal of Hydrometeorology
IS - 12
ER -