TY - JOUR
T1 - Evaluation of tropical cyclone forecasts in the next generation global prediction system
AU - Chen, Jan Huey
AU - Lin, Shian Jiann
AU - Zhou, Linjiong
AU - Chen, Xi
AU - Rees, Shannon
AU - Bender, Morris
AU - Morin, Matthew
N1 - Publisher Copyright:
© 2019 American Meteorological Society.
PY - 2019
Y1 - 2019
N2 - A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core(FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction'sGlobal Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core,FV3, has been selected for the National Oceanic and Atmospheric Administration's Next GenerationGlobal Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, whichbrings a great opportunity for the unification of weather and climate prediction systems. The performanceof tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operationalGFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction,the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern PacificOcean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysicsscheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besidestrack and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFSand operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed toinvestigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hitratios, lower false alarm ratios, and longer genesis lead times than those of the GFS model in most of theTC basins.
AB - A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core(FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction'sGlobal Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core,FV3, has been selected for the National Oceanic and Atmospheric Administration's Next GenerationGlobal Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, whichbrings a great opportunity for the unification of weather and climate prediction systems. The performanceof tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operationalGFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction,the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern PacificOcean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysicsscheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besidestrack and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFSand operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed toinvestigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hitratios, lower false alarm ratios, and longer genesis lead times than those of the GFS model in most of theTC basins.
UR - https://www.scopus.com/pages/publications/85075809238
U2 - 10.1175/MWR-D-18-0227.1
DO - 10.1175/MWR-D-18-0227.1
M3 - Article
AN - SCOPUS:85075809238
SN - 0027-0644
VL - 147
SP - 3409
EP - 3428
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 9
ER -