TY - GEN
T1 - Exploring extratropical transition with hybrid idealised models
AU - Krause, Claire
AU - Arthur, Craig
AU - Bruyere, Cindy
N1 - Publisher Copyright:
© 2017 Proceedings - 22nd International Congress on Modelling and Simulation, MODSIM 2017. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Tropical cyclones present a tangible risk to Australia’s tropical coastal communities, however extratropical transition (ETT) of these storms can result in significant impacts in mid-latitude regions as well. Tropical systems are driven by latent heat release in the inner core of the cyclone. A fully tropical system is highly axisymmetric; with a warm-cored vortex that is readily represented by a simple radial profile (wind speed is a function of distance from the centre in all directions). Extratropical cyclones on the other hand are driven by strong thermal gradients and as a result have a highly asymmetric wind field that cannot be as easily parameterised for use in stochastic models. In order to accurately model the risk of these transitioning storms on communities such as Perth, the wind field of these storms needs to be parameterised for inclusion in stochastic models. These models allow large numbers of storms to be quickly simulated for use in risk modelling applications. Some authors have attempted to develop parameterisations that captures the unique shape of the surface wind field, with some recent success (Loridan et al. 2015), however an implementation for the Australian region has not yet been developed. Geoscience Australia currently undertakes tropical cyclone risk assessments using a parameterised, 2D stochastic model called the Tropical Cyclone Risk Model (TCRM). TCRM uses parameterised wind fields to allow quick generation of thousands of tropical cyclones in order to develop a probabilistic understanding of tropical cyclone risk for Australia. At present, this model is not capable of simulating tropical cyclones undergoing ETT as a parameterisation of the wind field of these storms around Australia is not available. This work aims to explore ETT around Australia using a 3D, dynamical numerical weather prediction model with the ultimate goal of developing a parameterised wind field, suitable for inclusion in TCRM. This would allow risk assessments for these storms to be undertaken, and improve our understanding of the potential impact of such an event on large urban areas, such as Geraldton or Perth. A modified version of the Weather Research and Forecast (WRF) model (Hybrid WRF) was used to simulate a number of hybrid idealised tropical cyclones, and steer them to undergo ETT. Hybrid WRF was developed to facilitate control over the track and location of landfall of a tropical cyclone, by introducing a steering flow to the boundary conditions of the model run. This method was used to steer a number of idealised tropical cyclones from off the northwest coast of Western Australia, south towards Perth, with the intent to force them to undergo ETT. Surface wind fields and other environmental characteristics (minimum pressure, latitude, thermal wind components, geopotential thickness and others) were analysed to determine the phase of ETT. This case study is the first example of Hybrid WRF being used to examine ETT, and while the steering flow did move the tropical cyclones into the extratropics as intended, only one storm was observed to undergo ETT. Further development of the code for Hybrid WRF is underway, with enhancements to permit time-varying lateral boundary conditions highlighted as a means to improve the realism of these experiments. Based on these simulated events, we intend to develop time-evolving, storm-centred wind fields, as well as statistics on cyclone phase space parameters that can be used to determine the stage of transition to be used in a future stochastic-parametric model of tropical cyclones.
AB - Tropical cyclones present a tangible risk to Australia’s tropical coastal communities, however extratropical transition (ETT) of these storms can result in significant impacts in mid-latitude regions as well. Tropical systems are driven by latent heat release in the inner core of the cyclone. A fully tropical system is highly axisymmetric; with a warm-cored vortex that is readily represented by a simple radial profile (wind speed is a function of distance from the centre in all directions). Extratropical cyclones on the other hand are driven by strong thermal gradients and as a result have a highly asymmetric wind field that cannot be as easily parameterised for use in stochastic models. In order to accurately model the risk of these transitioning storms on communities such as Perth, the wind field of these storms needs to be parameterised for inclusion in stochastic models. These models allow large numbers of storms to be quickly simulated for use in risk modelling applications. Some authors have attempted to develop parameterisations that captures the unique shape of the surface wind field, with some recent success (Loridan et al. 2015), however an implementation for the Australian region has not yet been developed. Geoscience Australia currently undertakes tropical cyclone risk assessments using a parameterised, 2D stochastic model called the Tropical Cyclone Risk Model (TCRM). TCRM uses parameterised wind fields to allow quick generation of thousands of tropical cyclones in order to develop a probabilistic understanding of tropical cyclone risk for Australia. At present, this model is not capable of simulating tropical cyclones undergoing ETT as a parameterisation of the wind field of these storms around Australia is not available. This work aims to explore ETT around Australia using a 3D, dynamical numerical weather prediction model with the ultimate goal of developing a parameterised wind field, suitable for inclusion in TCRM. This would allow risk assessments for these storms to be undertaken, and improve our understanding of the potential impact of such an event on large urban areas, such as Geraldton or Perth. A modified version of the Weather Research and Forecast (WRF) model (Hybrid WRF) was used to simulate a number of hybrid idealised tropical cyclones, and steer them to undergo ETT. Hybrid WRF was developed to facilitate control over the track and location of landfall of a tropical cyclone, by introducing a steering flow to the boundary conditions of the model run. This method was used to steer a number of idealised tropical cyclones from off the northwest coast of Western Australia, south towards Perth, with the intent to force them to undergo ETT. Surface wind fields and other environmental characteristics (minimum pressure, latitude, thermal wind components, geopotential thickness and others) were analysed to determine the phase of ETT. This case study is the first example of Hybrid WRF being used to examine ETT, and while the steering flow did move the tropical cyclones into the extratropics as intended, only one storm was observed to undergo ETT. Further development of the code for Hybrid WRF is underway, with enhancements to permit time-varying lateral boundary conditions highlighted as a means to improve the realism of these experiments. Based on these simulated events, we intend to develop time-evolving, storm-centred wind fields, as well as statistics on cyclone phase space parameters that can be used to determine the stage of transition to be used in a future stochastic-parametric model of tropical cyclones.
KW - Hazard
KW - Parametric model
KW - Risk
KW - Tropical cyclone
UR - https://www.scopus.com/pages/publications/85080883577
M3 - Conference contribution
AN - SCOPUS:85080883577
T3 - Proceedings - 22nd International Congress on Modelling and Simulation, MODSIM 2017
SP - 1013
EP - 1019
BT - Proceedings - 22nd International Congress on Modelling and Simulation, MODSIM 2017
A2 - Syme, Geoff
A2 - MacDonald, Darla Hatton
A2 - Fulton, Beth
A2 - Piantadosi, Julia
PB - Modelling and Simulation Society of Australia and New Zealand Inc. (MSSANZ)
T2 - 22nd International Congress on Modelling and Simulation: Managing Cumulative Risks through Model-Based Processes, MODSIM 2017 - Held jointly with the 25th National Conference of the Australian Society for Operations Research and the DST Group led Defence Operations Research Symposium, DORS 2017
Y2 - 3 December 2017 through 8 December 2017
ER -