Abstract
Coastal communities face substantial risks from long-term sea level rise and decadal sea level variations, with the North Atlantic and U.S. East Coast being particularly vulnerable under changing climates. Employing a self-organizing map-based framework, we assess the North Atlantic sea level variability and predictability using 5000-year sea level anomalies (SLA) from two preindustrial control model simulations. Preferred transitions among patterns of variability are identified, revealing long-term predictability on decadal timescales related to shifts in Atlantic meridional overturning circulation phases. Combining this framework with model-analog techniques, we demonstrate prediction skill of large-scale SLA patterns and low-frequency coastal SLA variations comparable to that from initialized hindcasts. Moreover, additional short-term predictability is identified after the exclusion of low-frequency signals, which arises from slow gyre circulation adjustment triggered by the North Atlantic Oscillation-like stochastic variability. This study highlights the potential of machine learning to assess sources of predictability and to enable long-term climate prediction.
| Original language | English |
|---|---|
| Article number | 255 |
| Journal | npj Climate and Atmospheric Science |
| Volume | 7 |
| Issue number | 1 |
| DOIs | |
| State | Published - Dec 2024 |