TY - JOUR
T1 - Extreme-ultraviolet Late Phase of Solar Flares
AU - Chen, Jun
AU - Liu, Rui
AU - Liu, Kai
AU - Awasthi, Arun Kumar
AU - Zhang, Peijin
AU - Wang, Yuming
AU - Kliem, Bernhard
N1 - Publisher Copyright:
© 2020. The American Astronomical Society. All rights reserved..
PY - 2020/2/20
Y1 - 2020/2/20
N2 - A second peak in the extreme ultraviolet sometimes appears during the gradual phase of solar flares, which is known as the EUV late phase (ELP). Stereotypically ELP is associated with two separated sets of flaring loops with distinct sizes, and it has been debated whether ELP is caused by additional heating or extended plasma cooling in the longer loop system. Here we carry out a survey of 55 M-and-above GOES-class flares with ELP during 2010-2014. Based on the flare-ribbon morphology, these flares are categorized as circular-ribbon (19 events), two-ribbon (23 events), and complex-ribbon (13 events) flares. Among them, 22 events (40%) are associated with coronal mass ejections, while the rest are confined. An extreme ELP, with the late-phase peak exceeding the main-phase peak, is found in 48% of two-ribbon flares, 37% of circular-ribbon flares, and 31% of complex-ribbon flares, suggesting that additional heating is more likely present during ELP in two-ribbon than in circular-ribbon flares. Overall, cooling may be the dominant factor causing the delay of the ELP peak relative to the main-phase peak, because the loop system responsible for the ELP emission is generally larger than, and well separated from, that responsible for the main-phase emission. All but one of the circular-ribbon flares can be well explained by a composite "dome-plate" quasi-separatrix layer (QSL). Only half of these show a magnetic null point, with its fan and spine embedded in the dome and plate, respectively. The dome-plate QSL, therefore, is a general and robust structure characterizing circular-ribbon flares.
AB - A second peak in the extreme ultraviolet sometimes appears during the gradual phase of solar flares, which is known as the EUV late phase (ELP). Stereotypically ELP is associated with two separated sets of flaring loops with distinct sizes, and it has been debated whether ELP is caused by additional heating or extended plasma cooling in the longer loop system. Here we carry out a survey of 55 M-and-above GOES-class flares with ELP during 2010-2014. Based on the flare-ribbon morphology, these flares are categorized as circular-ribbon (19 events), two-ribbon (23 events), and complex-ribbon (13 events) flares. Among them, 22 events (40%) are associated with coronal mass ejections, while the rest are confined. An extreme ELP, with the late-phase peak exceeding the main-phase peak, is found in 48% of two-ribbon flares, 37% of circular-ribbon flares, and 31% of complex-ribbon flares, suggesting that additional heating is more likely present during ELP in two-ribbon than in circular-ribbon flares. Overall, cooling may be the dominant factor causing the delay of the ELP peak relative to the main-phase peak, because the loop system responsible for the ELP emission is generally larger than, and well separated from, that responsible for the main-phase emission. All but one of the circular-ribbon flares can be well explained by a composite "dome-plate" quasi-separatrix layer (QSL). Only half of these show a magnetic null point, with its fan and spine embedded in the dome and plate, respectively. The dome-plate QSL, therefore, is a general and robust structure characterizing circular-ribbon flares.
UR - https://www.scopus.com/pages/publications/85081201911
U2 - 10.3847/1538-4357/ab6def
DO - 10.3847/1538-4357/ab6def
M3 - Article
AN - SCOPUS:85081201911
SN - 0004-637X
VL - 890
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 158
ER -