Abstract
The occurrence of environmental conditions favorable for severe convective storms was assessed in an ensemble of 14 regional climate models covering Europe and the Mediterranean with a horizontal grid spacing of 0.44°. These conditions included the collocated presence of latent instability and strong deep-layer (surface to 500 hPa) wind shear, which is conducive to the severe and well-organized convective storms. The occurrence of precipitation in the models was used as a proxy for convective initiation. Two climate scenarios (RCP4.5 and RCP8.5) were investigated by comparing two future periods (2021-50 and 2071-2100) to a historical period (1971-2000) for each of these scenarios. The ensemble simulates a robust increase (change larger than twice the ensemble sample standard deviation) in the frequency of occurrence of unstable environments (lifted index ≥ -2) across central and south-central Europe in the RCP8.5 scenario in the late twenty-first century. This increase coincides with the increase in lower-tropospheric moisture. Smaller, less robust changes were found until midcentury in the RCP8.5 scenario and in the RCP4.5 scenario. Changes in the frequency of situations with strong (≥15 m s-1) deep-layer shear were found to be small and not robust, except across far northern Europe, where a decrease in shear is projected. By the end of the century, the simultaneous occurrence of latent instability, strong deep-layer shear, and model precipitation is simulated to increase by up to 100% across central and eastern Europe in the RCP8.5 and by 30%-50% in the RCP4.5 scenario. Until midcentury, increases in the 10%-25% range are forecast for most regions. A large intermodel variability is present in the ensemble and is primarily due to the uncertainties in the frequency of the occurrence of unstable environments.
| Original language | English |
|---|---|
| Pages (from-to) | 6771-6794 |
| Number of pages | 24 |
| Journal | Journal of Climate |
| Volume | 30 |
| Issue number | 17 |
| DOIs | |
| State | Published - 2017 |
| Externally published | Yes |
Keywords
- Buoyancy
- Climate change
- Climate models
- Convective storms
- Ensembles
- Storm environments