TY - JOUR
T1 - Global Occurrence and Chemical Impact of Stratospheric Blue Jets Modeled With WACCM4
AU - Pérez-Invernón, F. J.
AU - Gordillo-Vázquez, F. J.
AU - Smith, A. K.
AU - Arnone, E.
AU - Winkler, H.
N1 - Publisher Copyright:
©2019. American Geophysical Union. All Rights Reserved.
PY - 2019/3/16
Y1 - 2019/3/16
N2 - In this work we present the first parameterizations of the global occurrence rate and chemical influence of Blue Jets, a type of transient luminous event taking place in the stratospheric region above thunderclouds. These parameterizations are directly coupled with five different lightning parameterizations implemented in the Whole Atmosphere Community Climate Model (WACCM4). We have obtained a maximum Blue Jet global occurrence rate of about 0.9 BJ per minute. The geographical occurrence of Blue Jets is closely related to the chosen lightning parameterization. Some previously developed local chemical models of Blue Jets predicted an important influence onto the stratospheric concentration of N2O, NOx, and O3. We have used these results together with our global implementations of Blue Jets in WACCM4 to estimate their global chemical influence in the atmosphere. According to our results, Blue Jets can inject about 3.8 Tg N2O-N/year and 0.07 Tg NO-N/year near the stratosphere, where N2O-N and NO-N stand for the mass of nitrogen atoms in N2O and NO molecules, respectively. These production rates of N2O and NOx could have a direct impact on, for example, the acidity of rainwater or the greenhouse effect. We have found that Blue Jets could also slightly contribute to the depletion of stratospheric ozone. In particular, we have estimated that the maximum difference in the concentration of O3 at 30 km of altitude between simulations with and without Blue Jets can be about −5% in equatorial and polar regions.
AB - In this work we present the first parameterizations of the global occurrence rate and chemical influence of Blue Jets, a type of transient luminous event taking place in the stratospheric region above thunderclouds. These parameterizations are directly coupled with five different lightning parameterizations implemented in the Whole Atmosphere Community Climate Model (WACCM4). We have obtained a maximum Blue Jet global occurrence rate of about 0.9 BJ per minute. The geographical occurrence of Blue Jets is closely related to the chosen lightning parameterization. Some previously developed local chemical models of Blue Jets predicted an important influence onto the stratospheric concentration of N2O, NOx, and O3. We have used these results together with our global implementations of Blue Jets in WACCM4 to estimate their global chemical influence in the atmosphere. According to our results, Blue Jets can inject about 3.8 Tg N2O-N/year and 0.07 Tg NO-N/year near the stratosphere, where N2O-N and NO-N stand for the mass of nitrogen atoms in N2O and NO molecules, respectively. These production rates of N2O and NOx could have a direct impact on, for example, the acidity of rainwater or the greenhouse effect. We have found that Blue Jets could also slightly contribute to the depletion of stratospheric ozone. In particular, we have estimated that the maximum difference in the concentration of O3 at 30 km of altitude between simulations with and without Blue Jets can be about −5% in equatorial and polar regions.
KW - Blue Jets
KW - atmospheric chemistry
KW - atmospheric electricity
KW - lightning
KW - stratosphere
KW - transient luminous events
UR - https://www.scopus.com/pages/publications/85062794843
U2 - 10.1029/2018JD029593
DO - 10.1029/2018JD029593
M3 - Article
AN - SCOPUS:85062794843
SN - 2169-897X
VL - 124
SP - 2841
EP - 2864
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 5
ER -