Global soil carbon projections are improved by modelling microbial processes

Research output: Contribution to journalArticlepeer-review

802 Scopus citations

Abstract

Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models and they omit key biogeochemical mechanisms. Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics. Thus, we tested a new model that explicitly represents microbial mechanisms of soil C cycling on the global scale. Compared with traditional models, the microbial model simulates soil C pools that more closely match contemporary observations. It also projects a much wider range of soil C responses to climate change over the twenty-first century. Global soils accumulate C if microbial growth efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, the microbial model projects large soil C losses. By comparison, traditional models project modest soil C losses with global warming. Microbes also change the soil response to increased C inputs, as might occur with CO2 or nutrient fertilization. In the microbial model, microbes consume these additional inputs; whereas in traditional models, additional inputs lead to C storage. Our results indicate that ESMs should simulate microbial physiology to more accurately project climate change feedbacks.

Original languageEnglish
Pages (from-to)909-912
Number of pages4
JournalNature Climate Change
Volume3
Issue number10
DOIs
StatePublished - Oct 2013

Fingerprint

Dive into the research topics of 'Global soil carbon projections are improved by modelling microbial processes'. Together they form a unique fingerprint.

Cite this