High levels of molecular chlorine in the Arctic atmosphere

Jin Liao, L. Gregory Huey, Zhen Liu, David J. Tanner, Chris A. Cantrell, John J. Orlando, Frank M. Flocke, Paul B. Shepson, Andrew J. Weinheimer, Samuel R. Hall, Kirk Ullmann, Harry J. Beine, Yuhang Wang, Ellery D. Ingall, Chelsea R. Stephens, Rebecca S. Hornbrook, Eric C. Apel, Daniel Riemer, Alan Fried, Roy L. MauldinJames N. Smith, Ralf M. Staebler, J. Andrew Neuman, John B. Nowak

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

Chlorine radicals can function as a strong atmospheric oxidant, particularly in polar regions, where levels of hydroxyl radicals are low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone, and the oxidation of mercury to more toxic forms. Here we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We report high levels of molecular chlorine, of up to 400 pptv. Concentrations peaked in the early morning and late afternoon, and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimate that the chlorine radicals produced from the photolysis of molecular chlorine oxidized more methane than hydroxyl radicals, on average, and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyses mercury oxidation and the breakdown of tropospheric ozone. We therefore suggest that molecular chlorine exerts a significant effect on the atmospheric chemistry of the Arctic.

Original languageEnglish
Pages (from-to)91-94
Number of pages4
JournalNature Geoscience
Volume7
Issue number2
DOIs
StatePublished - Feb 2014

Fingerprint

Dive into the research topics of 'High levels of molecular chlorine in the Arctic atmosphere'. Together they form a unique fingerprint.

Cite this