High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: Influence of convective transport and stratospheric intrusions

Dan Li, Barbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, Martin Riese

    Research output: Contribution to journalArticlepeer-review

    39 Scopus citations

    Abstract

    Balloon-borne measurements of ozone in Lhasa (29.66<span classCombining double low line"inline-formula">ĝ</span>&thinsp;N, 91.14<span classCombining double low line"inline-formula">ĝ</span>&thinsp;E; 3650&thinsp;m above sea level) in August 2013 are investigated using backward trajectory calculations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Measurements show three time periods characterized by high ozone mixing ratios (OMRs) in the troposphere on 8, 11, and 18-20 August 2013 during the Asian summer monsoon (ASM) season. Here, we verified two different sources for the enhanced ozone values in the troposphere. First, transport of polluted air from the boundary layer, and second downward transport from the stratosphere by stratospheric intrusions. Air pollution from South Asia through convective and long-range transport plays a key role in enhancing middle tropospheric OMRs up to 90&thinsp;% on 8 August and up to 125&thinsp;% on 11 August 2013 compared to monthly mean ozone of August 2013. Stratospheric air intruded from the northern high-latitudes to the southeastern flank of the ASM anticyclone to the troposphere and is identified as the source of enhanced ozone according to backward trajectory calculation and satellite measurements by the Ozone Monitoring Instrument (OMI) and the Atmospheric Infrared Sounder (AIRS). Air parcels with high ozone moved from the high-latitude lower stratosphere to the middle and upper troposphere. These air parcels are then transported to Lhasa over long distances and enhanced upper and middle tropospheric ozone over Lhasa during 18-20 August 2013. Our findings demonstrate that the strong variability of ozone within the ASM anticyclone in the free troposphere is caused by transport from very different regions of the atmosphere.

    Original languageEnglish
    Pages (from-to)17979-17994
    Number of pages16
    JournalAtmospheric Chemistry and Physics
    Volume18
    Issue number24
    DOIs
    StatePublished - Dec 18 2018

    Fingerprint

    Dive into the research topics of 'High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: Influence of convective transport and stratospheric intrusions'. Together they form a unique fingerprint.

    Cite this