TY - JOUR
T1 - Hydrometeor lofting and mesoscale snowbands
AU - Lackmann, Gary M.
AU - Thompson, Gregory
N1 - Publisher Copyright:
© 2019 American Meteorological Society.
PY - 2019
Y1 - 2019
N2 - Environments that accompany mesoscale snowbands in extratropical cyclones feature strong midlevel frontogenesis and weak symmetric stability, conditions conducive to vigorous ascent. Prior observational and numerical studies document the occurrence of upward vertical velocities in excess of 1 m s21 near the comma head of winter cyclones. These values roughly correspond to the terminal fall velocity of snow; snow lofting has been measured directly with vertically pointing radars. Here, we investigate the occurrence of lower-tropospheric snow lofting near mesoscale bands and its contribution to snowfall heterogeneity. We test the hypothesis that hydrometeor lofting substantially influences snowfall distributions by analyzing the vertical snow flux in case-study simulations, by computing snow trajectories, and by testing sensitivity of simulated snowbands to parameterized snow terminal fall velocity and advection. These experiments confirm the presence of upward snow flux in the lower troposphere upstream of simulated mesoscale snowbands for two events (27 January 2015 and 2 February 2016). The band of lower-tropospheric lofting played a more important role in the January 2015 case relative to the February 2016 event. Lofting enhances the horizontal advection of snow by increasing hydrometeor residence time aloft, influencing the surface snowfall distribution. Experimental simulations illustrate that while lofting and advection influence the snow distribution, these processes reduce snowfall heterogeneity, contrary to our initial hypothesis. Our findings indicate that considerable horizontal displacement can occur between the locations of strongest ascent and heaviest surface snowfall. Numerical forecasts of snowbands are sensitive to formulations of terminal fall velocity of snow in microphysical parameterizations due to this lofting and transport process.
AB - Environments that accompany mesoscale snowbands in extratropical cyclones feature strong midlevel frontogenesis and weak symmetric stability, conditions conducive to vigorous ascent. Prior observational and numerical studies document the occurrence of upward vertical velocities in excess of 1 m s21 near the comma head of winter cyclones. These values roughly correspond to the terminal fall velocity of snow; snow lofting has been measured directly with vertically pointing radars. Here, we investigate the occurrence of lower-tropospheric snow lofting near mesoscale bands and its contribution to snowfall heterogeneity. We test the hypothesis that hydrometeor lofting substantially influences snowfall distributions by analyzing the vertical snow flux in case-study simulations, by computing snow trajectories, and by testing sensitivity of simulated snowbands to parameterized snow terminal fall velocity and advection. These experiments confirm the presence of upward snow flux in the lower troposphere upstream of simulated mesoscale snowbands for two events (27 January 2015 and 2 February 2016). The band of lower-tropospheric lofting played a more important role in the January 2015 case relative to the February 2016 event. Lofting enhances the horizontal advection of snow by increasing hydrometeor residence time aloft, influencing the surface snowfall distribution. Experimental simulations illustrate that while lofting and advection influence the snow distribution, these processes reduce snowfall heterogeneity, contrary to our initial hypothesis. Our findings indicate that considerable horizontal displacement can occur between the locations of strongest ascent and heaviest surface snowfall. Numerical forecasts of snowbands are sensitive to formulations of terminal fall velocity of snow in microphysical parameterizations due to this lofting and transport process.
UR - https://www.scopus.com/pages/publications/85075629678
U2 - 10.1175/MWR-D-19-0036.1
DO - 10.1175/MWR-D-19-0036.1
M3 - Article
AN - SCOPUS:85075629678
SN - 0027-0644
VL - 147
SP - 3879
EP - 3899
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 11
ER -