Identifying Robust Decarbonization Pathways for the Western U.S. Electric Power System Under Deep Climate Uncertainty

Srihari Sundar, Flavio Lehner, Nathalie Voisin, Michael T. Craig

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Climate change threatens the resource adequacy of future power systems. Existing research and practice lack frameworks for identifying decarbonization pathways that are robust to climate-related uncertainty. We create such an analytical framework, then use it to assess the robustness of alternative pathways to achieving 60% emissions reductions from 2022 levels by 2040 for the Western U.S. power system. Our framework integrates power system planning and resource adequacy models with 100 climate realizations from a large climate ensemble. Climate realizations drive electricity demand; thermal plant availability; and wind, solar, and hydropower generation. Among five initial decarbonization pathways, all exhibit modest to significant resource adequacy failures under climate realizations in 2040, but certain pathways experience significantly less resource adequacy failures at little additional cost relative to other pathways. By identifying and planning for an extreme climate realization that drives the largest resource adequacy failures across our pathways, we produce a new decarbonization pathway that has no resource adequacy failures under any climate realizations. This new pathway is roughly 5% more expensive than other pathways due to greater capacity investment, and shifts investment from wind to solar and natural gas generators. Our analysis suggests modest increases in investment costs can add significant robustness against climate change in decarbonizing power systems. Our framework can help power system planners adapt to climate change by stress testing future plans to potential climate realizations, and offers a unique bridge between energy system and climate modeling.

Original languageEnglish
Article numbere2024EF004769
JournalEarth's Future
Volume12
Issue number10
DOIs
StatePublished - Oct 2024
Externally publishedYes

Keywords

  • capacity expansion
  • climate adaptation
  • power system planning
  • resource adequacy
  • robust decision-making
  • single model initial-condition large ensemble

Fingerprint

Dive into the research topics of 'Identifying Robust Decarbonization Pathways for the Western U.S. Electric Power System Under Deep Climate Uncertainty'. Together they form a unique fingerprint.

Cite this