TY - JOUR
T1 - Impact of Changing Winds on the Mauna Loa CO2 Seasonal Cycle in Relation to the Pacific Decadal Oscillation
AU - Jin, Yuming
AU - Keeling, Ralph F.
AU - Rödenbeck, Christian
AU - Patra, Prabir K.
AU - Piper, Stephen C.
AU - Schwartzman, Armin
N1 - Publisher Copyright:
© 2022 The Authors.
PY - 2022/7/16
Y1 - 2022/7/16
N2 - Long-term measurements at the Mauna Loa Observatory (MLO) show that the CO2 seasonal cycle amplitude (SCA) increased from 1959 to 2019 at an overall rate of 0.22 (Formula presented.) 0.034 ppm decade−1 while also varying on interannual to decadal time scales. These SCA changes are a signature of changes in land ecological CO2 fluxes as well as shifting winds. Simulations with the TM3 tracer transport model and CO2 fluxes from the Jena CarboScope CO2 Inversion suggest that shifting winds alone have contributed to a decrease in SCA of −0.10 (Formula presented.) 0.022 ppm decade−1 from 1959 to 2019, partly offsetting the observed long-term SCA increase associated with enhanced ecosystem net primary production. According to these simulations and MIROC-ACTM simulations, the shorter-term variability of MLO SCA is nearly equally driven by varying ecological CO2 fluxes (49%) and varying winds (51%). We also show that the MLO SCA is strongly correlated with the Pacific Decadal Oscillation (PDO) due to varying winds, as well as with a closely related wind index (U-PDO). Since 1980, 44% of the wind-driven SCA decrease has been tied to a secular trend in the U-PDO, which is associated with a progressive weakening of westerly winds at 700 mbar over the central Pacific from 20°N to 40°N. Similar impacts of varying winds on the SCA are seen in simulations at other low-latitude Pacific stations, illustrating the difficulty of constraining trend and variability of land CO2 fluxes using observations from low latitudes due to the complexity of circulation changes.
AB - Long-term measurements at the Mauna Loa Observatory (MLO) show that the CO2 seasonal cycle amplitude (SCA) increased from 1959 to 2019 at an overall rate of 0.22 (Formula presented.) 0.034 ppm decade−1 while also varying on interannual to decadal time scales. These SCA changes are a signature of changes in land ecological CO2 fluxes as well as shifting winds. Simulations with the TM3 tracer transport model and CO2 fluxes from the Jena CarboScope CO2 Inversion suggest that shifting winds alone have contributed to a decrease in SCA of −0.10 (Formula presented.) 0.022 ppm decade−1 from 1959 to 2019, partly offsetting the observed long-term SCA increase associated with enhanced ecosystem net primary production. According to these simulations and MIROC-ACTM simulations, the shorter-term variability of MLO SCA is nearly equally driven by varying ecological CO2 fluxes (49%) and varying winds (51%). We also show that the MLO SCA is strongly correlated with the Pacific Decadal Oscillation (PDO) due to varying winds, as well as with a closely related wind index (U-PDO). Since 1980, 44% of the wind-driven SCA decrease has been tied to a secular trend in the U-PDO, which is associated with a progressive weakening of westerly winds at 700 mbar over the central Pacific from 20°N to 40°N. Similar impacts of varying winds on the SCA are seen in simulations at other low-latitude Pacific stations, illustrating the difficulty of constraining trend and variability of land CO2 fluxes using observations from low latitudes due to the complexity of circulation changes.
KW - Empirical orthogonal functions of winds
KW - Hadley cell expansion
KW - Land biogeochemistry
KW - Large-scale circulation change
UR - https://www.scopus.com/pages/publications/85133904628
U2 - 10.1029/2021JD035892
DO - 10.1029/2021JD035892
M3 - Article
AN - SCOPUS:85133904628
SN - 2169-897X
VL - 127
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 13
M1 - e2021JD035892
ER -