TY - JOUR
T1 - Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference
AU - Thériault, Julie M.
AU - Rasmussen, Roy
AU - Petro, Eddy
AU - Trépanier, Jean Yves
AU - Colli, Matteo
AU - Lanza, Luca G.
N1 - Publisher Copyright:
© 2015 American Meteorological Society.
PY - 2015
Y1 - 2015
N2 - The accurate measurement of snowfall is important in various fields of study such as climate variability, transportation, and water resources. A major concern is that snowfall measurements are difficult and can result in significant errors. For example, collection efficiency of most gauge-shield configurations generally decreases with increasing wind speed. In addition, much scatter is observed for a given wind speed, which is thought to be caused by the type of snowflake. Furthermore, the collection efficiency depends strongly on the reference used to correct the data, which is often the Double Fence Intercomparison Reference (DFIR) recommended by the World Meteorological Organization. The goal of this study is to assess the impact of weather conditions on the collection efficiency of the DFIR. Note that the DFIR is defined as a manual gauge placed in a double fence. In this study, however, only the double fence is being investigated while still being called DFIR. To address this issue, a detailed analysis of the flow field in the vicinity of the DFIR is conducted using computational fluid dynamics. Particle trajectories are obtained to compute the collection efficiency associated with different precipitation types for varying wind speed. The results show that the precipitation reaching the center of the DFIR can exceed 100% of the actual precipitation, and it depends on the snowflake type, wind speed, and direction. Overall, this study contributes to a better understanding of the sources of uncertainty associated with the use of the DFIR as a reference gauge to measure snowfall.
AB - The accurate measurement of snowfall is important in various fields of study such as climate variability, transportation, and water resources. A major concern is that snowfall measurements are difficult and can result in significant errors. For example, collection efficiency of most gauge-shield configurations generally decreases with increasing wind speed. In addition, much scatter is observed for a given wind speed, which is thought to be caused by the type of snowflake. Furthermore, the collection efficiency depends strongly on the reference used to correct the data, which is often the Double Fence Intercomparison Reference (DFIR) recommended by the World Meteorological Organization. The goal of this study is to assess the impact of weather conditions on the collection efficiency of the DFIR. Note that the DFIR is defined as a manual gauge placed in a double fence. In this study, however, only the double fence is being investigated while still being called DFIR. To address this issue, a detailed analysis of the flow field in the vicinity of the DFIR is conducted using computational fluid dynamics. Particle trajectories are obtained to compute the collection efficiency associated with different precipitation types for varying wind speed. The results show that the precipitation reaching the center of the DFIR can exceed 100% of the actual precipitation, and it depends on the snowflake type, wind speed, and direction. Overall, this study contributes to a better understanding of the sources of uncertainty associated with the use of the DFIR as a reference gauge to measure snowfall.
KW - Automatic weather stations
KW - Numerical analysis/modeling
KW - Precipitation
KW - Snowfall
KW - Surface observations
KW - Wind effects
UR - https://www.scopus.com/pages/publications/84945981277
U2 - 10.1175/JAMC-D-15-0034.1
DO - 10.1175/JAMC-D-15-0034.1
M3 - Article
AN - SCOPUS:84945981277
SN - 1558-8424
VL - 54
SP - 1918
EP - 1930
JO - Journal of Applied Meteorology and Climatology
JF - Journal of Applied Meteorology and Climatology
IS - 9
ER -