TY - JOUR
T1 - Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations
AU - Shin, Hyeyum Hailey
AU - Hong, Song You
AU - Dudhia, Jimy
PY - 2012/2
Y1 - 2012/2
N2 - The lowestmodel level height z 1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z 1 is within the surface layer. In this study, impacts of z 1 on the performance of planetary boundary layer (PBL) parameterizations are investigated. Three conceptually different schemes in the Weather Research and Forecasting (WRF)model are tested for one complete diurnal cycle: the nonlocal, first-order Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2) schemes and the local, 1.5-order Mellor-Yamada-Janjić (MYJ) scheme. Surface variables are sensitive to z 1 in daytime when z 1 is below 12 m, even though the height is within the surface layer. Meanwhile during nighttime, the variables are systematically altered as z 1 becomes shallower from 40 m. PBL structures show the sensitivity in the similar manner, but weaker. The order of sensitivity among the three schemes is YSU, ACM2, and MYJ. The significant sensitivity of the YSU parameterization comes from the PBL height calculation. This is considerably alleviated by excluding the thermal excess term in determining the PBL height when z1 is within the surface layer. The factor that specifies the ratio of nonlocal transport to total mixing is critical to the sensitivity of the ACM2 scheme. The MYJ scheme has no systematic sensitivity, since it is a local scheme. It is also noted that a numerical instability appears accompanying the unrealistic PBL structures when the grid spacing in the surface layer suddenly jumps.
AB - The lowestmodel level height z 1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z 1 is within the surface layer. In this study, impacts of z 1 on the performance of planetary boundary layer (PBL) parameterizations are investigated. Three conceptually different schemes in the Weather Research and Forecasting (WRF)model are tested for one complete diurnal cycle: the nonlocal, first-order Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2) schemes and the local, 1.5-order Mellor-Yamada-Janjić (MYJ) scheme. Surface variables are sensitive to z 1 in daytime when z 1 is below 12 m, even though the height is within the surface layer. Meanwhile during nighttime, the variables are systematically altered as z 1 becomes shallower from 40 m. PBL structures show the sensitivity in the similar manner, but weaker. The order of sensitivity among the three schemes is YSU, ACM2, and MYJ. The significant sensitivity of the YSU parameterization comes from the PBL height calculation. This is considerably alleviated by excluding the thermal excess term in determining the PBL height when z1 is within the surface layer. The factor that specifies the ratio of nonlocal transport to total mixing is critical to the sensitivity of the ACM2 scheme. The MYJ scheme has no systematic sensitivity, since it is a local scheme. It is also noted that a numerical instability appears accompanying the unrealistic PBL structures when the grid spacing in the surface layer suddenly jumps.
KW - Parameterization
KW - Regional models
KW - Subgrid-scale processes
UR - https://www.scopus.com/pages/publications/84857088094
U2 - 10.1175/MWR-D-11-00027.1
DO - 10.1175/MWR-D-11-00027.1
M3 - Article
AN - SCOPUS:84857088094
SN - 0027-0644
VL - 140
SP - 664
EP - 682
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 2
ER -