TY - JOUR
T1 - Improving Global Weather Prediction in GFDL SHiELD Through an Upgraded GFDL Cloud Microphysics Scheme
AU - Zhou, Linjiong
AU - Harris, Lucas
AU - Chen, Jan Huey
AU - Gao, Kun
AU - Guo, Huan
AU - Xiang, Baoqiang
AU - Tong, Mingjing
AU - Huff, J. Jacob
AU - Morin, Matthew
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2022/7
Y1 - 2022/7
N2 - We describe the third version of the Geophysical Fluid Dynamics Laboratory cloud microphysics scheme (GFDL MP v3) implemented in the System for High-resolution prediction on Earth-to-Local Domains (SHiELD). Compared to the GFDL MP v2, the GFDL MP v3 is entirely reorganized, optimized, and modularized into functions. The particle size distribution (PSD) of all hydrometeor categories is redefined to better mimic observations, and the cloud droplet number concentration (CDNC) is calculated from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) aerosol data. In addition, the GFDL MP has been redesigned so all processes use the redefined PSD to ensure overall consistency and easily permit the introduction of new PSDs and microphysical processes. A year's worth of global 13-km, 10-day weather forecasts were performed with the new GFDL MP. Compared to the GFDL MP v2, the GFDL MP v3 significantly improves SHiELD's predictions of geopotential height, air temperature, and specific humidity in the Troposphere, as well as the high, middle and total cloud fractions and the liquid water path. The predictions are improved even further by the use of reanalysis aerosol data to calculate CDNC, and also by using the more realistic PSD available in GFDL MP v3. However, the upgrade of the GFDL MP shows little impact on the precipitation prediction. Degradations caused by the new scheme are discussed and provide a guide for future GFDL MP development.
AB - We describe the third version of the Geophysical Fluid Dynamics Laboratory cloud microphysics scheme (GFDL MP v3) implemented in the System for High-resolution prediction on Earth-to-Local Domains (SHiELD). Compared to the GFDL MP v2, the GFDL MP v3 is entirely reorganized, optimized, and modularized into functions. The particle size distribution (PSD) of all hydrometeor categories is redefined to better mimic observations, and the cloud droplet number concentration (CDNC) is calculated from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) aerosol data. In addition, the GFDL MP has been redesigned so all processes use the redefined PSD to ensure overall consistency and easily permit the introduction of new PSDs and microphysical processes. A year's worth of global 13-km, 10-day weather forecasts were performed with the new GFDL MP. Compared to the GFDL MP v2, the GFDL MP v3 significantly improves SHiELD's predictions of geopotential height, air temperature, and specific humidity in the Troposphere, as well as the high, middle and total cloud fractions and the liquid water path. The predictions are improved even further by the use of reanalysis aerosol data to calculate CDNC, and also by using the more realistic PSD available in GFDL MP v3. However, the upgrade of the GFDL MP shows little impact on the precipitation prediction. Degradations caused by the new scheme are discussed and provide a guide for future GFDL MP development.
KW - aerosol and cloud
KW - cloud microphysics
KW - numerical weather prediction
KW - particle size distribution
UR - https://www.scopus.com/pages/publications/85135069451
U2 - 10.1029/2021MS002971
DO - 10.1029/2021MS002971
M3 - Article
AN - SCOPUS:85135069451
SN - 1942-2466
VL - 14
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
IS - 7
M1 - e2021MS002971
ER -