Interfacial layers in clear and cloudy atmospheric boundary layers

H. J.J. Jonker, M. Van Reeuwijk, P. P. Sullivan, E. G. Patton

Research output: Contribution to journalConference articlepeer-review

9 Scopus citations

Abstract

This paper reports on some recent advances in the understanding of the behaviour of atmospheric interfacial layers. We focus on those interfaces where a turbulent layer is separated from a quiescent layer by a relatively strong density gradient and study in particlar the entrainment rate, i.e. the rate with which the mixed layer penetrates into the quiescent layer by entraining fluid across the density interface. Making use of massively parallelized supercomputers, we conduct a large number of Direct Numerical Simulations (DNS) for a wide range of conditions and study the impact exerted on the entrainment rate by the Reynolds number, the Prandtl(/Schmidt) number, and the strength of the density jump represented by the Richardson number. We study two cases that are relevant for the atmosphere (/ocean), i.e. I] where turbulence is generated by a surface buoyancy flux and II] where turbulence is generated by shear (surface momentum flux) Of course with DNS one cannot simulate the high Reynolds numbers encountered in atmospheric contexts, but present computer resources do allow faithful simulation of the classical laboratory experiments of these situations and even achieve Reynolds numbers more than ten times larger.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalProceedings of the International Symposium on Turbulence, Heat and Mass Transfer
Volume2012-September
DOIs
StatePublished - 2012
Event7th International Symposium On Turbulence, Heat and Mass Transfer, THMT 2012 - Palermo, Italy
Duration: Sep 24 2012Sep 27 2012

Fingerprint

Dive into the research topics of 'Interfacial layers in clear and cloudy atmospheric boundary layers'. Together they form a unique fingerprint.

Cite this