TY - JOUR
T1 - Internal variability in projections of twenty-first-century Arctic sea ice loss
T2 - Role of the large-scale atmospheric circulation
AU - Wettstein, Justin J.
AU - Deser, Clara
PY - 2014/1
Y1 - 2014/1
N2 - Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate SystemModel, version 3 (CCSM3) ensemble for the period 2000-61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020-59 range from -2.0×106 to -5.7×106km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. Asimilar nearly threefold range (from -7.0×103 to -19×103km3) is foundfor summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice-atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.
AB - Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate SystemModel, version 3 (CCSM3) ensemble for the period 2000-61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020-59 range from -2.0×106 to -5.7×106km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. Asimilar nearly threefold range (from -7.0×103 to -19×103km3) is foundfor summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice-atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.
UR - https://www.scopus.com/pages/publications/84892524775
U2 - 10.1175/JCLI-D-12-00839.1
DO - 10.1175/JCLI-D-12-00839.1
M3 - Article
AN - SCOPUS:84892524775
SN - 0894-8755
VL - 27
SP - 527
EP - 550
JO - Journal of Climate
JF - Journal of Climate
IS - 2
ER -