TY - JOUR
T1 - Lightning Characteristics Associated With Storm Modes Observed During RELAMPAGO
AU - Rocque, Marquette N.
AU - Deierling, Wiebke
AU - Rasmussen, Kristen L.
AU - Albrecht, Rachel I.
AU - Medina, Bruno L.
N1 - Publisher Copyright:
© 2024 Battelle Memorial Institute and The Authors.
PY - 2024/2/28
Y1 - 2024/2/28
N2 - Global satellite studies show a maximum in deep convection and lightning downstream of the Andes in subtropical South America. The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign was designed to investigate the physical processes that contribute to the rapid development of deep convection and mesoscale convective systems (MCSs) in Argentina. A lightning mapping array (LMA) was deployed to Argentina as part of RELAMPAGO to collect lightning observations from extreme storms in the region. This study combines lightning data from the LMA and the Geostationary Lightning Mapper onboard GOES-16 with 1-km gridded radar data to examine the electrical characteristics of a variety of convective storms throughout their life cycle observed during RELAMPAGO. Results from the full campaign show 48% of flashes are associated with deep convection that occurs along the eastern edge of the Sierras de Córdoba (SDC) overnight. These flashes are 65 km2 smaller on average compared to stratiform flashes, which occur most frequently 50–100 km east of the SDC in the early morning hours, consistent with the upscale growth of MCSs off the terrain. Analysis of the 13–14 December MCS shows that sharp increases in flash rates correspond to deep and wide convective cores that have high graupel and hail mass, 35-dBZ volume, and ice water path. This work validates previous satellite studies of lightning in the region, but also provides higher spatial and temporal resolution information across the convective life cycle that has not been available in previous studies.
AB - Global satellite studies show a maximum in deep convection and lightning downstream of the Andes in subtropical South America. The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign was designed to investigate the physical processes that contribute to the rapid development of deep convection and mesoscale convective systems (MCSs) in Argentina. A lightning mapping array (LMA) was deployed to Argentina as part of RELAMPAGO to collect lightning observations from extreme storms in the region. This study combines lightning data from the LMA and the Geostationary Lightning Mapper onboard GOES-16 with 1-km gridded radar data to examine the electrical characteristics of a variety of convective storms throughout their life cycle observed during RELAMPAGO. Results from the full campaign show 48% of flashes are associated with deep convection that occurs along the eastern edge of the Sierras de Córdoba (SDC) overnight. These flashes are 65 km2 smaller on average compared to stratiform flashes, which occur most frequently 50–100 km east of the SDC in the early morning hours, consistent with the upscale growth of MCSs off the terrain. Analysis of the 13–14 December MCS shows that sharp increases in flash rates correspond to deep and wide convective cores that have high graupel and hail mass, 35-dBZ volume, and ice water path. This work validates previous satellite studies of lightning in the region, but also provides higher spatial and temporal resolution information across the convective life cycle that has not been available in previous studies.
UR - https://www.scopus.com/pages/publications/85185494496
U2 - 10.1029/2023JD039520
DO - 10.1029/2023JD039520
M3 - Article
AN - SCOPUS:85185494496
SN - 2169-897X
VL - 129
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 4
M1 - e2023JD039520
ER -