Microphysical Piggybacking in the Weather Research and Forecasting Model

Noémi Sarkadi, Lulin Xue, Wojciech W. Grabowski, Zachary J. Lebo, Hugh Morrison, Bethan White, Jiwen Fan, Jimy Dudhia, István Geresdi

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

This paper presents incorporation of the microphysical piggybacking into the Weather Research and Forecasting (WRF) model. Microphysical piggybacking is to run a single simulation applying two microphysical schemes, the first scheme driving the simulation and the second piggybacking this simulated flow. “Driving the simulation” means that the simulated microphysical processes, affect the cloud buoyancy and thus force the simulated flow. In contrast, the piggybacking variables are advected by the simulated flow and undergo microphysical transformation, but they do not affect the simulated flow (like in prescribed flow—kinematic—simulations). The two sets of variables (driver and piggybacker) include temperature, water vapor mixing ratio, and all microphysical variables. We provide details of implementing piggybacking into the WRF model, illustrate its applications, and demonstrate the benefits of this methodology in two idealized three-dimensional cases: (a) a squall line case applying two microphysics schemes, the Thompson bulk microphysics scheme and the University of Pécs/NCAR bin (UPNB) scheme. The piggybacking simulations revealed that the microphysics-dynamics interaction plays a more important role than the pure microphysical size sorting effect in the transition zone formation. (b) A case of daytime shallow-to-deep convective development over land. This case uses the UPNB scheme and contrasts convection developing in environments with either pristine or polluted cloud condensation nuclei (CCN). The piggybacking results indicated that the increase of cloud cover and decrease of supersaturation are mainly associated with the microphysical effect of increasing CCN while the change of precipitation on the ground is also influenced by microphysics-dynamics interactions.

Original languageEnglish
Article numbere2021MS002890
JournalJournal of Advances in Modeling Earth Systems
Volume14
Issue number8
DOIs
StatePublished - Aug 2022

Keywords

  • Weather Research and Forecasting model
  • dynamics-microphysics interactions
  • piggybacking

Fingerprint

Dive into the research topics of 'Microphysical Piggybacking in the Weather Research and Forecasting Model'. Together they form a unique fingerprint.

Cite this