Multi-sensor measurements of mixed-phase clouds above Greenland

Robert A. Stillwell, Matthew D. Shupe, Jeffrey P. Thayer, Ryan R. Neely, David D. Turner

Research output: Contribution to journalConference articlepeer-review

Abstract

Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.

Original languageEnglish
Article number08006
JournalEPJ Web of Conferences
Volume176
DOIs
StatePublished - Apr 13 2018
Event28th International Laser Radar Conference, ILRC 2017 - Bucharest, Romania
Duration: Jun 25 2017Jun 30 2017

Fingerprint

Dive into the research topics of 'Multi-sensor measurements of mixed-phase clouds above Greenland'. Together they form a unique fingerprint.

Cite this