TY - JOUR
T1 - Multi-sensor study of precipitable water vapor and atmospheric profiling from microwave radiometer, GNSS/MET, radiosonde, and ECMWF reanalysis in Beijing
AU - Hu, Heng
AU - Yang, Rongkang
AU - Lee, Wen Chau
AU - Cao, Yunchang
AU - Mao, Jiajia
AU - Gao, Lina
N1 - Publisher Copyright:
© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - We compare the precipitable water vapor (PWV) determined using a domestic ground-based microwave radiometer (MWR PWV) with PWV measurements from radiosondes (RS PWV), the Global Navigation Satellite System (GNSS PWV), and reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) (EC PWV). The MWR PWV is affected by precipitation, and thus it differs greatly from the other three observations. The correlation coefficient between the MWR PWV and RS PWV (EC PWV) is 0.934 (0.933), and the root mean square error (RMSE) is 17.19 mm (16.05 mm), whereas the correlation coefficient between the GNSS PWV and RS PWV (EC PWV) is 0.989 (0.986), and the RMSE is 17.04 mm (15.83 mm). The scatter distributions of the MWR PWV and the other observations show a systematic deviation that is negatively correlated with the surface air temperature. After polynomial fitting and corrections are applied, the correlation coefficients between the MWR PWV and the RS PWV and EC PWV increase to 0.993 and 0.99, and the RMSEs decrease to 14.13 and 15.86 mm, respectively. The temperature and water vapor density profiles are retrieved from the bright temperature and can reflect the quality of the bright temperature. Because the PWV retrieved from the ground-based MWR has a linear relationship with the brightness temperature, the accuracy of the PWV can be analyzed in terms of the quality of the brightness temperature. We found that the differences in the temperature profile below 2000 m are smaller, whereas those in the water vapor density profile below 2000 m show the largest difference. This finding reflects the differences in the brightness temperature, which may be the cause of the inaccurate PWV observations.
AB - We compare the precipitable water vapor (PWV) determined using a domestic ground-based microwave radiometer (MWR PWV) with PWV measurements from radiosondes (RS PWV), the Global Navigation Satellite System (GNSS PWV), and reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) (EC PWV). The MWR PWV is affected by precipitation, and thus it differs greatly from the other three observations. The correlation coefficient between the MWR PWV and RS PWV (EC PWV) is 0.934 (0.933), and the root mean square error (RMSE) is 17.19 mm (16.05 mm), whereas the correlation coefficient between the GNSS PWV and RS PWV (EC PWV) is 0.989 (0.986), and the RMSE is 17.04 mm (15.83 mm). The scatter distributions of the MWR PWV and the other observations show a systematic deviation that is negatively correlated with the surface air temperature. After polynomial fitting and corrections are applied, the correlation coefficients between the MWR PWV and the RS PWV and EC PWV increase to 0.993 and 0.99, and the RMSEs decrease to 14.13 and 15.86 mm, respectively. The temperature and water vapor density profiles are retrieved from the bright temperature and can reflect the quality of the bright temperature. Because the PWV retrieved from the ground-based MWR has a linear relationship with the brightness temperature, the accuracy of the PWV can be analyzed in terms of the quality of the brightness temperature. We found that the differences in the temperature profile below 2000 m are smaller, whereas those in the water vapor density profile below 2000 m show the largest difference. This finding reflects the differences in the brightness temperature, which may be the cause of the inaccurate PWV observations.
KW - European Centre for Medium-Range Weather Forecasts reanalysis
KW - Global Navigation Satellite System Meteorology
KW - ground-based microwave radiometer
KW - radiosonde
UR - https://www.scopus.com/pages/publications/85098668838
U2 - 10.1117/1.JRS.14.044514
DO - 10.1117/1.JRS.14.044514
M3 - Article
AN - SCOPUS:85098668838
SN - 1931-3195
VL - 14
JO - Journal of Applied Remote Sensing
JF - Journal of Applied Remote Sensing
IS - 4
M1 - 044514
ER -