TY - JOUR
T1 - Observational Quantification of Tropical High Cloud Changes and Feedbacks
AU - Raghuraman, Shiv Priyam
AU - Medeiros, Brian
AU - Gettelman, Andrew
N1 - Publisher Copyright:
© 2024. The Authors.
PY - 2024/4/16
Y1 - 2024/4/16
N2 - The response of tropical high clouds to surface warming and their radiative feedbacks are uncertain. For example, it is uncertain whether their coverage will contract or expand in response to surface warming and whether such changes entail a stabilizing radiative feedback (iris feedback) or a neutral feedback. Global satellite observations with passive and active remote sensing capabilities over the last two decades can now be used to address such effects that were previously observationally limited. Using these observations, we show that the vertically averaged coverage exhibits no significant contraction or expansion. However, we find a reduction in coverage at the altitude where high clouds peak and are particularly radiatively-relevant. This results in a negative longwave (LW) feedback and a positive shortwave (SW) feedback which cancel to yield a near-zero high-cloud amount feedback, providing observational evidence against an iris feedback. Next, we find that tropical high clouds have risen but have also warmed, leading to a positive, but small, high-cloud altitude feedback dominated by the LW feedback. Finally, we find that high clouds have been thinning, leading to a near-zero high-cloud optical depth feedback from a cancellation between negative LW and positive SW feedbacks. Overall, high clouds lead the total tropical cloud feedback to be small due to the negative LW-positive SW feedback cancellations.
AB - The response of tropical high clouds to surface warming and their radiative feedbacks are uncertain. For example, it is uncertain whether their coverage will contract or expand in response to surface warming and whether such changes entail a stabilizing radiative feedback (iris feedback) or a neutral feedback. Global satellite observations with passive and active remote sensing capabilities over the last two decades can now be used to address such effects that were previously observationally limited. Using these observations, we show that the vertically averaged coverage exhibits no significant contraction or expansion. However, we find a reduction in coverage at the altitude where high clouds peak and are particularly radiatively-relevant. This results in a negative longwave (LW) feedback and a positive shortwave (SW) feedback which cancel to yield a near-zero high-cloud amount feedback, providing observational evidence against an iris feedback. Next, we find that tropical high clouds have risen but have also warmed, leading to a positive, but small, high-cloud altitude feedback dominated by the LW feedback. Finally, we find that high clouds have been thinning, leading to a near-zero high-cloud optical depth feedback from a cancellation between negative LW and positive SW feedbacks. Overall, high clouds lead the total tropical cloud feedback to be small due to the negative LW-positive SW feedback cancellations.
KW - anvils
KW - climate sensitivity
KW - clouds
KW - feedbacks
KW - high clouds
KW - satellites
UR - https://www.scopus.com/pages/publications/85189506683
U2 - 10.1029/2023JD039364
DO - 10.1029/2023JD039364
M3 - Article
AN - SCOPUS:85189506683
SN - 2169-897X
VL - 129
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 7
M1 - e2023JD039364
ER -