TY - JOUR
T1 - Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing
AU - Bera, Sudarsan
AU - Prabha, Thara V.
AU - Grabowski, Wojciech W.
N1 - Publisher Copyright:
© 2016. American Geophysical Union. All Rights Reserved.
PY - 2016
Y1 - 2016
N2 - Microphysical characteristics of premonsoon and monsoon deep cumuli over India observed by an instrumented aircraft are contrasted focusing on influences of environmental conditions and entrainment-mixing processes. Differences in the lower tropospheric temperature and moisture profiles lead to contrasting undiluted cloud buoyancy profiles around the cloud base, larger in the premonsoon case. It is argued that this affects the variation of the mean and maximum cloud droplet number concentrations and the droplet radius within the lowest several hundred meters above the cloud base. The conserved-variable thermodynamic diagram analysis suggests that entrained parcels originate from levels close to the observational level. Mixing processes and their impact on the droplet size distribution (DSD) are investigated contrasting 1 Hz and 10 Hz observations. Inhomogeneous-type mixing, likely because of unresolved small-scale structures associated with active turbulent stirring, is noted at cloud edge volumes where dilution is significant and DSDs shift toward smaller sizes with reduced droplet number concentrations due to complete evaporation of smaller droplets and partial evaporation of larger droplets. DSDs within cloud core volumes suggest that the largest droplets are formed in the least diluted volumes where raindrops can form at higher levels; no superadiabatic droplet growth is observed. The typical diluted parcel size is approximately 100-200m for cloud edge volumes, and it is much smaller, 10-20 m, for cloud core volumes. Time scale analysis indicates the possibility of inhomogeneous type mixing within the diluted cloud edge volumes at spatial scales of a 100m or more.
AB - Microphysical characteristics of premonsoon and monsoon deep cumuli over India observed by an instrumented aircraft are contrasted focusing on influences of environmental conditions and entrainment-mixing processes. Differences in the lower tropospheric temperature and moisture profiles lead to contrasting undiluted cloud buoyancy profiles around the cloud base, larger in the premonsoon case. It is argued that this affects the variation of the mean and maximum cloud droplet number concentrations and the droplet radius within the lowest several hundred meters above the cloud base. The conserved-variable thermodynamic diagram analysis suggests that entrained parcels originate from levels close to the observational level. Mixing processes and their impact on the droplet size distribution (DSD) are investigated contrasting 1 Hz and 10 Hz observations. Inhomogeneous-type mixing, likely because of unresolved small-scale structures associated with active turbulent stirring, is noted at cloud edge volumes where dilution is significant and DSDs shift toward smaller sizes with reduced droplet number concentrations due to complete evaporation of smaller droplets and partial evaporation of larger droplets. DSDs within cloud core volumes suggest that the largest droplets are formed in the least diluted volumes where raindrops can form at higher levels; no superadiabatic droplet growth is observed. The typical diluted parcel size is approximately 100-200m for cloud edge volumes, and it is much smaller, 10-20 m, for cloud core volumes. Time scale analysis indicates the possibility of inhomogeneous type mixing within the diluted cloud edge volumes at spatial scales of a 100m or more.
UR - https://www.scopus.com/pages/publications/84987788977
U2 - 10.1002/2016JD025133
DO - 10.1002/2016JD025133
M3 - Article
AN - SCOPUS:84987788977
SN - 0148-0227
VL - 121
SP - 9767
EP - 9788
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
IS - 16
ER -