Abstract
Identifying the two physical mechanisms behind the production and sustenance of the quiescent solar corona and solar wind poses two of the outstanding problems in solar physics today. We present analysis of spectroscopic observations from the Solar and Heliospheric Observatory that are consistent with a single physical mechanism being responsible for a significant portion of the heat supplied to the lower solar corona and the initial acceleration of the solar wind; the ubiquitous action of magnetoconvection- driven reprocessing and exchange reconnection of the Sun's magnetic field on the supergranular scale. We deduce that while the net magnetic flux on the scale of a supergranule controls the injection rate of mass and energy into the transition region plasma, it is the global magnetic topology of the plasma that dictates whether the released ejecta provides thermal input to the quiet solar corona or becomes a tributary that feeds the solar wind.
| Original language | English |
|---|---|
| Pages (from-to) | 650-664 |
| Number of pages | 15 |
| Journal | Astrophysical Journal |
| Volume | 654 |
| Issue number | 1 I |
| DOIs | |
| State | Published - Jan 1 2007 |
| Externally published | Yes |
Keywords
- Solar wind
- Sun: UV radiation
- Sun: corona
- Sun: granulation
- Sun: magnetic fields
- Sun: transition region