On the Contribution of Quiet-Sun Magnetism to Solar Irradiance Variations: Constraints on Quiet-Sun Variability and Grand-minimum Scenarios

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

While the quiet-Sun magnetic field shows only little variation with the solar cycle, long-term variations cannot be completely ruled out from first principles. We investigate the potential effect of quiet-Sun magnetism on spectral solar irradiance through a series of small-scale dynamo simulations with zero vertical flux imbalance (BZ) and varying levels of small-scale magnetic field strength, and one weak network case with an additional flux imbalance corresponding to a flux density of (BZ) = 100 G. From these setups, we compute the dependence of the outgoing radiative energy flux on the mean vertical magnetic field strength in the photosphere at a continuum optical depth τ = 1 ((|BZ|)τ=1. We find that a quiet-Sun setup with a mean vertical field strength of (|BZ|)τ=1= 69 G is about 0.6% brighter than a non-magnetic reference case. We find a linear dependence of the outgoing radiative energy flux on the mean field strength (|BZ|)τ=1 with a relative slope of 1.4 × 10-4 G-1. With this sensitivity, only a moderate change of the quiet-Sun field strength by 10% would lead to a total solar irradiance variation comparable to the observed solar cycle variation. While this does provide strong indirect constraints on possible quiet-Sun variations during a regular solar cycle, it also emphasizes that potential variability over longer timescales could make a significant contribution to longer-term solar irradiance variations.

Original languageEnglish
Article number140
JournalAstrophysical Journal
Volume894
Issue number2
DOIs
StatePublished - May 10 2020

Fingerprint

Dive into the research topics of 'On the Contribution of Quiet-Sun Magnetism to Solar Irradiance Variations: Constraints on Quiet-Sun Variability and Grand-minimum Scenarios'. Together they form a unique fingerprint.

Cite this