Abstract
Production of dimethyl sulfide (DMS) from marine samples is often quantified using gas chromatography techniques. Typically, these are labour intensive and have a slow sample turnover rate. Here we demonstrate the use of a portable fast DMS sensor (FDS) that utilises the chemiluminescent reaction of DMS and ozone to measure DMS production in aqueous samples, with a maximum frequency of 10 Hz. We have developed a protocol for quantifying DMS production that removes potential signal interference from other biogenic trace gases such as isoprene (2-methyl-1,3-butadiene) and hydrogen sulfide. The detection limit was 0. 89 pM (0. 02 ppbv) when using a DMS standard gas mixture. The lowest DMS production rates quantified with the FDS and verified using conventional gas chromatography with flame photometric detection (GC-FPD) were around 0. 01 nmol min-1. There was a strong correlation in DMS production when comparing the FDS and GC-FPD techniques with a range of marine samples (e. g., r2 = 0. 94 for Emiliania huxleyi). However, the combined dataset showed the FDS measured 22% higher DMS production than the GC-FPD, with the differences in rates likely due to interfering gases, for example hydrogen sulfide and isoprene. This possible overestimation of DMS production is smaller than the two-fold difference in DMS production between day and night samples from a culture of E. huxleyi. The response time of the instrument to changes in DMS production is method dependent (e. g., geometry of incubation vessel, bubble size) and was approximately 4 min under our conditions when using a culture of E. huxleyi (800 ml) with aeration at 100 ml min-1. We suggest the FDS can reduce sample handling, is suitable for short- and long-term measurements of DMS production in algal cultures, and will widen the range of DMS research in marine environments.
| Original language | English |
|---|---|
| Pages (from-to) | 163-172 |
| Number of pages | 10 |
| Journal | Biogeochemistry |
| Volume | 110 |
| Issue number | 1-3 |
| DOIs | |
| State | Published - Sep 2012 |
Keywords
- Chemiluminescence detector
- DMS production
- Dimethyl sulfide (DMS)
- Fast DMS sensor
- Method